What’s Cloud Computing? Varieties, Examples And Benefits

What’s Cloud Computing? Varieties, Examples And Benefits

Based on the service model, cloud could be categorized into IaaS (Infrastructure-as-a-Service), PaaS (Platform-as-a-Service), and SaaS (Software-as-a-Service). It entails encryption, upkeep of information ai trust confidentiality guarding from unauthorized, undesirable entry with features Authentication and authorization. Live-chat with our sales team or get in touch with a business growth professional in your region. As you possibly can see, this involves value, effort to set it up and then to take care of, and tedious as nicely, in phrases of arising with plans to purge the techniques in production in the method in which of upkeep.

Modernizing Legacy Techniques: Embracing Cloud Options

You begin with a number of members talking with one another after which gradually the number of members will increase. As time passes, because the variety of members increases cloud sourcing, there can be extra traffic on the network and your server will get slow down. The Thin clients are those that use internet browsers facilitating moveable and light-weight accessibilities and others are generally known as Fat Clients that use many functionalities for offering a strong user experience. Improve your developer expertise, catalog all services, and improve software well being.

Characteristics Of Cloud Computing

What is Cloud Sourcing

It emphasizes a service-oriented approach the place IT resources are accessed as companies quite than as owned assets. This paradigm shift allows companies to focus extra on configuring and managing purposes and companies via user-friendly interfaces and APIs supplied by cloud vendors. Unlike conventional IT setups that require substantial investments in physical hardware and software program, cloud sourcing allows organizations to make the most of these computing assets on a subscription or pay-as-you-go basis. This shift from owning to accessing IT assets presents a basically different approach to managing and scaling know-how within a enterprise.

What Are The Benefits Of Cloud Computing?

The elastic nature of the cloud means you possibly can work with a supplier and scale resource utilization up or down as needed, remaining versatile as marketplace situations change. Cloud computing provides supply-chain corporations the power to unite their physical infrastructure in a cloud-based upkeep dashboard. This contains constructing techniques, material-handling mechanisms like conveyors and pallet vans, and vitality or water methods. That’s when Compaq Computer Corporation coined the term “cloud computing” in a marketing strategy.

  • This frees organizations from purchasing and increasing the on-premises physical hardware wanted to run utility testing, offering quicker time to market.
  • Artificial intelligence (AI) is increasingly in demand across all enterprise horizontals and verticals.
  • Its future will doubtless embody exponential advances in processing capability, fueled by quantum computing and synthetic intelligence, as properly as different new technologies to increase cloud adoption.
  • Cloud computing leverages remote servers in huge data facilities, segmenting physical servers into scalable virtual machines (VMs) for unbiased app and OS performance.
  • Software installed on the hard disk needs to be put in on every laptop which may consume a lot of time and efforts and its capital expenditure is quite high which supplies rise to cloud-based functions.

Thanks to cloud computing, it’s potential for users to entry recordsdata over the web on gadgets corresponding to laptops and smartphones. Cloud companies additionally make it much simpler to organise information, as recordsdata can be stored, shared and organised on a cloud-based network. Another function of cloud computing is that resources are pooled collectively and shared amongst users. In 1999, it launched cloud-based CRM software to exchange conventional desktop CRM. Because early computers have been giant and expensive, initial variations of the cloud were designed to give multiple users entry to a single machine.

What is Cloud Sourcing

The supplier hosts the infrastructure and middleware components, and the client accesses these providers by way of an internet browser. There are several developments pushing business—across all industries—toward the cloud. For most organizations, the current means of doing enterprise won’t deliver the agility to develop, or may not provide the platform or flexibility to compete. The explosion of data created by an growing number of digital businesses is pushing the price and complexity of information heart storage to new levels—demanding new skills and analytics tools from IT. Cloud sourcing is a flexible strategy that permits firms throughout a range of industries to embrace innovation and streamline processes. Through cloud sourcing, one can rent virtualized infrastructure, entry software program purposes, or leverage cutting-edge know-how, opening doors to increased effectivity and competitiveness in today’s ever-evolving digital panorama.

Moving to the cloud removes the headaches and prices of sustaining IT safety. An experienced cloud provider continually invests in the newest security technology—not solely to answer potential threats, but additionally to allow customers to raised meet their regulatory requirements. The layer made up of software program and hardware, i.e., the computers, servers, central servers, and databases, is the back-end layer. This layer is the first element of cloud and is totally responsible for storing info securely.

In this text, I am only going to put in writing what cloud computing is and how it is totally different from outsourcing. It has been round since a very lengthy time and it is just now that it has gained prominence. The want for cloud computing to have gained prominence are plenty, some of the drives has been around the need to reduce the operational value. Nowadays Cloud Computing and Cloud Sourcing is on the agenda in plenty of organizations.

Cloud-based knowledge evaluation is the rationale major pharmaceutical companies like Bayer are in a position to maintain critical and seasonal drugs in inventory reliably throughout the nation year-round. The proper technologies can provide several months of forecasting and prediction data to keep forward of seasonal surges and even unpredictable changes in local demand patterns. Inventory management automation is especially helpful throughout high-demand durations, similar to the vacation season.

You pay for these servers if you finish up using them and as nicely as when you’re not utilizing them. Now, your website is put within the cloud server as you place it on a dedicated server. People begin visiting your website and should you suddenly want more computing energy, you’ll scale up based on the need. Teams that use cloud infrastructures can more rapidly execute and ship worth to their clients.

What is Cloud Sourcing

It comes up with a mix of parts of each non-public and public clouds providing seamless knowledge and application processing in between environments. It provides flexibility in optimizing assets similar to delicate knowledge in personal clouds and essential scalable purposes within the public cloud. Cloud computing offers advanced computing sources available on-demand, that scale as needed, with common updates and with out the necessity to buy and preserve an on-premise infrastructure. With cloud computing, groups become extra efficient and cut back time to market as they can rapidly acquire, scale companies, with out the considerable effort that requires managing a conventional on-premise infrastructure. Cloud deployments allow teams to connect their tools from finish to finish, making it easier to monitor all elements of the pipeline.

Google’s cloud services had been down a number of times last 12 months, and, most just lately in April, Microsoft confronted one other outage, affecting each Microsoft 365 and Azure. In 2021, firms will invest in multi-cloud and hybrid cloud strategies, together with cloud-agnostic platforms, to make sure larger IT resiliency. This includes software-as-a-service (SaaS), which occupies the most important market share, and platform-as-a-service (PaaS), which will grow the quickest.

By 2025, IBM Cloud worldwide knowledge facilities will comprise energy procurement drawn from 75% renewable sources. Artificial intelligence (AI) is more and more in demand across all business horizontals and verticals. Cloud computing and the provision of cloud-hosted AI libraries, modeling engines, and algorithms will be crucial to its adoption. A totally different survey by Pepperdata discovered that one in three companies confronted as much as 40% cloud budget overruns in 2020.

Before cloud computing, organizations purchased and maintained an on-premise IT infrastructure. Though cost-savings drove much of the initial shift to the cloud, many organizations discover that public, private, or a hybrid cloud infrastructure presents a bunch of advantages. Hybrid clouds fuse personal clouds with public clouds for the best of both worlds.

Comprehensive monitoring is another key capability for organizations working towards DevOps because it permits them to handle points and incidents quicker. Cloud providers share metrics about the health of the system, including utility and server CPU, reminiscence, request price, error rate, common response time, and so forth. For example, monitoring the load across many virtual machines (VMs) signifies that groups can add more capacity if there is an increase in demand, or teams can automate the scaling (up/down) based on those metrics to scale back human intervention and costs. Users can entry the most recent machines with extreme, multi-core CPUs designed for heavy parallel processing tasks. Additionally, major cloud providers provide cutting-edge GPU and TPU hardware machines for intense graphical, matrix, and synthetic intelligence processing duties. These cloud suppliers persistently update with the most recent in processor technology.

Transform Your Business With AI Software Development Solutions https://www.globalcloudteam.com/ — be successful, be the first!


Warning: Undefined array key "extension" in /www/wwwroot/temp.codingburgas.net/wp-content/themes/Divi/epanel/custom_functions.php on line 1471

Warning: file_exists(): File name is longer than the maximum allowed path length on this platform (4096): /www/wwwroot/temp.codingburgas.net//image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAoKCgoKCAgICAgICAgICAgICAgICAgICAgICAgICAgIChANCAgOCggIDRUNDhERExMTCA0WGBYSGBASExIBBQUFCAcIDwgIDxIPDQ0SFhISEhISEhISEhISEhUVEhISEhISEhUSFRISEhISEhISEhISEhUSFRISEhUSEhIVEv/AABEIAWgB4AMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAAAAQIDBAUHBgj/xABcEAABAwIDBAMLBgkFDQYHAAABAAIDBBEFEiEGEzFBUWFxBxQVIjJUgZGUodIIFkJSk7EjVVZiwdHT1PAzcpLh8SQmNDZDU3R1gqKys7UlNXN2tMIXRWSDhqXi/8QAGgEBAQEBAQEBAAAAAAAAAAAAAAIBAwQFBv/EADMRAAIBAwIDBgYBBAMBAAAAAAABAhESUQMhEzFBBBRSYaHwFSJxgZGx0TNCwfEjMmIF/9oADAMBAAIRAxEAPwD4yQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIC94HqfNaj7CX4UeB6nzWp+wl+FdfanBfR7lHLPq/Do5ZyBuB1R4UdUeynlP/tSHBaocaSpH/2JfhXccLVat8orO5rI+Hxyzi/gap80qfsJfhS+BKrzOq1/+nl+FdjaFbPBnaVnc1kz4fHLOI+BKrzSq9nl+FAwSq8zqvZ5fhXcpIk0MUPsyXU34dHLOIDAqvzOq9nm+FL4Bq/Mqv2ab4V3JjVK0dCh6Cyb8OjlnCPAFZ5lV+zTfCnM2drToKGsJ6BSzk+5i7w0KeleWm/BS9JB/wDzo5ZwcbIYl+K8R9iqf2aJNkcRaCXYZiDWjUuNFUgDtJj0X1tgc2dg6RoVqOhDmlrhdrgWkdIOhXRdnWTg+xpdT4sOAVnmVX7NN8KPAFZ5lV+zTfCvoLF6EwyvjN/FcbH6zeLT16EKqG8/euT00X3GOWcH8AVnmVX7NN8KBs/WeZVfs03wLvQCcAe39SmxDuMcs4INn6zlQ1ns03wIGz9Z5lV+zTfAu+Nbfhqpo2+tLEO4xyz59+b1b5jWezTfAlOztbzoaz2Wf4F9AF/UlLjzC3hodxjlnz6dnqzzGs9mm+BB2erfMaz2ab4F9AEdKfI02+5bw0V3COWfPnzfrPMaz2ab4EfN+s8xrPZpvgXf7IYFvCQ7hHLOBN2brjwoK09lLOf/AGJfmzXfi+u9kn+BfR9CNFZsrXZ0+pD7FFdT5m+bVd+L632Wf4EfNut8wrfZZ/gX0o5ROKruqyO5Ryz5v+btb5hWeyz/AAJDs9W+Y1ns03wL6LeonlV3RZN7jHLPnn5v1nmNZ7NN8CTwBWeZVfs03wr6BeonFb3NZN7hHLOBeAavzKr9nm+FL4Bq/Mqv2ab4V3dKVvc1k34fHLODeAqvzOr9nm+FHgOr8zqvZ5vhXdioyt7lHJvw+OWcM8B1XmdV7PL8KPAlV5pVezy/Cu3uTSt7jHLHw6OWcR8C1XmlT9hL8KPAtV5pU/YS/Cu1OTXJ3GOWb8OjlnF/A1T5pU/YS/Ck8DVPmtT9hL8K7MU1b3COWPh0cs434HqfNan7CX4UeB6nzWp+wl+FdhKRO4RyzfhsfEzj/gep81qPsJfhR4IqfNaj7CX4V19IU7hHLHw2OWcg8EVPmtR9hJ8KPBFT5rUfYyfCuvFItXYI5Y+GxyzkXgip81qPsZPhR4IqPNaj7GT4V11NTuEcsfDY5ZyTwTUea1H2Mnwo8E1HmtR9jJ8K62hO4Ryx8NjlnJPBNR5rUfYyfCjwTUea1H2MnwrraE7hHLHw2OWck8E1HmtR9jJ8KPBNR5rUfYyfCut3QU7hHLHw2OWck8E1Hm1R9jJ8KPBNR5tUfYyfCutITuEcsfDY5ZM1OCYw9CsxwHoXqPeWsM4lQYh5a0sCw+SaVkUMbpJpntjijZq58jzZrRy4nmvf7TdwvFoonztdQ1T4GB9RR0tQ6SriaRe5jMYDiBc2aSTbS65ynGOzZynqRi6N0qcpaVZzaN7SnjD3C2ZzQTZa9HhzWak5i1pIBGnWtZtStF4zQUx0agwqfUtPA3I9K9Vsls1NiFQKamdC2VzHyAzybqPKwAuu/KbHVeeTpuU5UVWebypzAuqv7hWKgAmTDQHA2JrDZ1uOU7vX0LmDW2XK5PkZDVjL/q6jWBSNSsCfZc2zob2ylYWuyk6O+9e4iF1z/ZmiM8pBlbCGRumfI61g1pa0+U5rR5QJLnAAAnlY+/pBlc6MuDnRkNJsW3BaHC7XasdYi7TwNxyVwn0PNqrc8x3RMNuxkzeLPEf/ADT5J9B09K8MV2qqpGyMfG7yXtLT6Roe1cgrqd0b3xv4xvc0jrGl/VZTqLqTpy2oVQU4FKDy6be5K3Thz0PYuR0FjGqkebJsWh0/jkpHi3oSphClKV39qV5ubnitTNQikk4Jl+ns9SkkOnZoFSKIboalvy5cUMPq4q0aadFwU6io/JUxXaJxZE4KF6mcVE9dEaV3qF6mkUDlSKQx6hcpXqJytFoYEjkoSPVGojKaU4ppWmkZTHJ7lGStRo0phTymOWmoa5NKcUwrTRCmlKUhWgRNSlIhoEpEIWo0S6RKUiAEIQgBCQoQAlBSIQAhCEBYhbbhxVlrnXAv/UoGe5THpHJcqnI9VsBi5w+tpazLve9Z2yujuBnZYte0E8HZHOt12XTduMCkf3ztBsxXyy01TvjiMcL3MrqPfDNUMka05nRa5reUwAEXAzDl3c3FBLWwxYxLNBRSZmPmicGbqQj8E6VxaS2HNoSOFweAK7N3MdkXbO1NTiOIYvh7sKFNLG1tNOZX4kHawA09rZxqQAXm7iAbEleXWkk69f35Hj12k6rnTl0fkeIrMBpjs2K/cg1oxhlMJ8z824MQeY8ubKRmN72ur/c2wWnqKXGZKiESPpMIlqKZxc9u6la2Uh4ykX1A0Nxor2wYgxLBqjCO+aegqjXsxCgFS7LBILNa6n3nIhrXDmfGBANitCsoGYBhWKd91lJLXYnR940tJSyiZzWvzNkmkNhZgEl+FvEtcl1lEp7OPWpDk949W9vpsZGF4VgdFs9heLYhh7qusmkqomU7J5IW1swqJ2MNQ4E5IYooj5I1JFwUuL0mHYng82KYfQDDKnD6iGGqpopXSwSxTuYxj2ZwMrgXjgB5Lr30KwNuauN2zGz8TZY3SxVGJmWJr2mSPNPMWmRgN23B0uOaudy+tjbs7jsb5Y2ySVOHGKJz2iSQNmiLjGwm7gOdhoubz5/5KSdLqut1OfSuD0HdCoXTYTsvDE0OkmiqYYwdAXyyUrG36Bchb2JbJ0uFltLDsvWY/M1jDV18jalkDpHNDiylEcbm2F7XAFuBLiDbH2txZsWH7MyQvjkmomyzOjD2kseyWmka2RoN2Zsp4r0u0MdbicvfuBY/u6aoDHS0U+Iy0slFLkDXs3YJsy4LuHEm1xYrlKv7/Zzq0l0VXlb18jx3dI7nzGsoqzDKSpo48RqG0b8NrWvbNS1j3ERtvILmF+V2pvwBGhsJ9oHYLgsneRwsY3XQtYK2pqZ3QwMmc0PMUETWuFgHDlp0uINn7dYyKM4fGzFqnGK6jqWVla41Uk2HiSKQPhija+95Bq3MDoL3FzYT7Y7GxYzUPxHBq+iLavLJU0dXOKeopZ8rWyAgtN2ktv2k2zAhRXJcZOi4jdu++/2r1PH7aVeEyMgqsHbU4fWOe8VNAXPfHDlHizQVN9Ab2sOIPBlta2yNdZ9ibh3HrPT1lT7d7L0lBHCxmIx1uIuc41UNLaSkp47DIBPe5lvytrfg2wzedw+XK8EaWIWKVD1QScNqteZ1qFq8H3TcOyPbM1viy6PIH02gAX7Wj3L2uBTh7AepG1eG7+mlZa7g3OzT6bNR69R6V3buieZO2Rxgc+Gtu3ToSt59lv6x1pxFr3GulurpQ3svp0nTrXnqegRpsf1qeN3p7VE23MX/ALErNCtqAexKWX1sAlc5Dn34aLUwMP8AFk8m4TSeq38cUEq0yhHN7O1DQlLtOvpTcypM01aHyVKQoqDyVK5eiJxZE4KFwU7lWkK6I0hkKhepXqF6pFoY9QuUrlE9WahgQ5CQrSiNyaU8qMqjRjlGpHKNajRpTSnFNK01DHJhTymqjRhSFOKaUA0pEpSIjREIKFqNEKROTUAIQhAIUJUiAEIQgBCEICyJM2iliabapkUdu1S30XE5Ax9nCw48epWQLHxWgddlnOc5rr20v7leMpFsoveyxkm9QAGIX9Kq4zICw24Cw94S07rROsfGJGnRqLqviRO77TqofIjqZIA6NVJGbG/MahMATmj1rgzoz1+Fyh7AefNWzEDxF+1ed2bqsrsrjo7h0XXrAxcmYU92q80A6PctXdqKWJcJGpmU+MchYcv4CQcdP4KtzRKu5vQuTZR73YWsBbkJ1C9pGFynZar3crdeJseroXV6NwLRbXrXbSlU8evGjOOba4cIKmVliGuO8i5Nyv8AGIt1G49CxWga3vw0t08r9IXTe6xhuaJk4HjROyO/mPItfsP3rmjR120965z2ZcJVQjQOd7dSB7r62426utK0dOiAOtSixpCV4HK9uvilIQ4dC1GIa4Dlf09PNIR0X6+3qTiOtFv7FdShh4c7/oSAetOIQB/YuiNNWhHiqVwTaMeKpHL0o5MrvVaRW3hVZF0RpXeonqZ4UTgqRRC5RPUz1E5WiiMJCnhNcFpSI3KNSOTCFSNI3JikeoytRo1yYU8phWmoYU0pzk1UaNKaU8ppQDU1OTURoFIlKRaaIUicmoAQhCAEhSoQCIQhACEIsgNJia49KijcdRbsvwUwF7X481xOQuQnsSsuHdgsp4xYKNt3HsUslktA92Yl2gPJPxZ+gHWlooST4/G+luQUWLnxh2KJErmVAOv0J7QmAc09ref8argyqkkRsbg2I1H9XWvb4FU71gPMaFeIYFr7NVm7kA+i7TXpXJsxnshGkfErUQvqnGNcpGGPUwelZ8zLdfZf1L0U8Kyq2nsvPI6JlOmdlIIP9WvNdY2MrBJENeFlyNzSPT+he37nFZZ2UkWOgF+jqTTlRnPWjWJ7zFqBs8MkTuEjHN7DbQ9oNlwippSxz2O0dGXNcD0tNrL6Gi4LlndWwfdzido8SdvjdT2AA+kixXbVVdzyaUqOh4drb87dZQB6E9rdUgbc9q41PQMcEOFud+sKWCBz3BjGlz3GzWtFyT0BeuwfY1w8eobmdyiDrAfziPKPVcDtVI2p5OmopH/ycb5OtjXOAvyJA4plVRyR23jHsJ5Oa5v3hdDxud1NCHtY1oaQ0M0DfUOChwvEZJ4/7opc0Thx0cD0HIdfSF1S6Cu1Uc8ISBq9LjuzjmuzUzXSxP4NGroz9U34jrWaMFqP8xJ6QrSZqkqE1EPFUjgrEGHygaxuHoSuopPqH3L0o5tlCRVJFqS0b/q+8frVWShf9X3j9atGoznhRPWg6hf0D1qvUUrm8R6tVZSKT1E9TSBROVIsYAmuCkATCFRqInJhUjgoyqRQx6jIUrkwhajSIppTymlaaiMphUhTCtNGlNTimlaBqQpUhQ1CJEqRaaCQpUIBqEqRACEIQCXQShFkABKkSoDZ3UbuBLT16qDvB+a7XsI7be4hOaxODSvNcZYWGUbrcL36CFJ3u5o8k9v9igbI4cytXDau+juKm4mUCnSPHMWJ5KhXnxyt/FIIwN5fK4ctbO7AOaxNwHG5D9TfQD9JRqvI48uZUAT2j3LWhwuN2maRh6SGuA7QFDXYTJE/Lo8EBzXsN2uBv+pcZRaFyZTaPcpYx0cf1KWOgk+oVYiwqY8Ge9cZINo9dsnXbxgafLboetb2VeKwGjmhkDsvi8HC/LlZezjqWkah1+xcpJkuSGPjVGtgWkZAeR9361HJHfmB2uaP0rjKDC1EjzFVCRy/jgpMHqnRSNe3SzrX+8e9bUuFh/8AlGt9IVWowJjdXVDQOo/1LnZIrjQpRnVtn64TRtcDxGvb1pNrcHFVTvi0z2zRk8njh+r0rn+AbQR0gLWzxPH5xd7soW6zugtPkiI+iX9S9K3VGeCWzrE5fNC5ri0g5mktItqCOKloaHOQXPbGwm2Ygkn+a0an7l6vE6eOokNS+JzWSPaHFrJWxvPNocT5RA5KpU4Tnc46wRXO7YTnlDPotA7LalcuG67HqjqRaqz0OC4S2Nre9Ddxtnc8NzuZcXc09A6LrRqaxkWj3+PwIzadNz0LzlFA6Jtoy6JmoLpHuLyDbg3kDYcAOCqvY7MSLuJ5u19y9MNHJ5562BNqcULgQW/g73AdoCekDjZeY+cjo7ZWssOGYXAA00F162LB8/jTnTkLrLxbZ2G+jCewL0pRRxukww7ba7fwj42hpA1aRcdRCuv2ugIJ3jbA9Dz6rNWJBsVvBcOygHgBf9PFKNmYW3DpgSOOtrdoVbHRM0JNrYTwN+xrv1KB+0oPksc7/Zd+pVo9m4j5L79hVn5tNH0nn0rao6KpE/HHH/J+vQ+pV5sXd9QKZ2z0Y6dOsppwhg5n71RaqZ9RjThxYPWpaSt3mhba4/jkrJw1g5DrVaZ7I2u3YGYg6jgFp0Rmy2vxCiK+0u8MMpMMFZV0FHuaXDm1dQ8UUMj93DTCWVwaGXe7K1xsNSsfZJuze0VPLJR0FJNHE/cS5qE0VRE8sDxlfkY9oLXXD2G3EXuCB5e9eR5V23/y6HyIAmkL0PdKwRmH4rXUEb3PjpJIjE95BeYainhqmNfb6TRNkJsL5L81p4L3K8aqoxLT4ZLungOY6aSnpi9p4OaypkY4tPEG1jyXqWpGla7M9i1Y2qVaJ5PDOU9Phk8jc0VNUSsuRmiglkbccRmY0i60tq9mK3D3iPEKSale8ExmQAskA8rdysJZJa4uGkkXF7XX0/8AJU/7kZ/plX/zAp1dayNy3J19eyF633PkGZpBIcC1zSWua4EOaQbEOB1BBBFj0JhXvj3MsZxCrxOppcOmkppMaxd0MsslPTiVnhGps6IVEjTIzTRwBB5Erx2O4TUUkz6esgkpqiK2eKVuVwDtWuHJzDyc0kHkSukNSMuTR009WMuTVcVM5yYV6/Zrub4vXsEtFhtRLC/yJnmOnieOF2SVL2CRt76tuNCn7U9y3GaCF09ZhsrKeMZpJY5KepbE0cXSimleY2Dm4iw5kKuJGtKqv1K4sK0qq/U8UU0r0+y2weJ4jE6bDqCSrhZIYnvjlpm5ZA1ryxzZZWuByvYeFvGWHjeGzUs0tNVROhqad2SaFxaXRuLWvAOQkHxXNOhNw4KlJN0ruWpxbomqlErYGyWIGm79GHVpoQ0v76FNKYd2OMmfL/JD6/k6cVs433L8apYJamrwuaCmgjMs0z5qTLHGBq4gTF3oAJueC7XT7d48zAGxRbJyyhuECKKv7/om0RpBS5W1jqcv3thD45iHEi1xfTjq69qTjR75PPrdotScKPfJ8wJpT8BoJZjDBBHJUTy2ZHFCx0ksjrE2axoJcbAk24AE8l0I9xDaHJvPBElrXy99UO87N33xmv1WuuznFc2kd3qxjzaX1OcpCrGI0kkEkkVRFJBNC4tlhmY6OWNwAOV7HgFpsQdeRB5r0GPdz3FaSnbV1eHTQ0jzC1s5fBI1zqghsADYpHPu8uaBpxcBxICpzS5vmU5xVKtb8jy6F6rabudYrQUja7EKB9JSPfHGHzS04kD5b7tr6cSmVhNjo5otbWyv4H3IceqmCSDCKkRvALX1D6ekuCLghlVKx1j025rOLClar8k8aFK1VPqeFViiw+aW5gp55w0gOMMMsoaTwDt205b2PHoXodtO55iuFsEmJYfLTQucGCcOhngD3GzWvlp3vbG4kgAOIudBdd4+Q7/IYr/pFH/yp1GrrKML47ka2uo6bnHc+YamnfG4sljfFI22aORjo3tuA4ZmPAIuCDryIUa9/wDKXcfnTi4ubA4bYdH/AGTQFeAV6U74qWTppTvipZBCEKzoBSFKgoDebAej7k7cnoKzmV7x0epPGJPXkYqy29hHEEdoTWHXRNGKOtYgG/Uqkkzj5Pi9Y/QpFxaq8QDNNZHDlrlb29aibjUvKEf0SquV/wBc+gAKRrn/AOcf6Db7llaHCSbLbcXqeUQ/oH9KDXVp0DCB1MA95KhAJFi5/G/lG/r6FDUvc3Rr3+l33KU6nOUaGrBJiB5G3bGFt0tPVuAu7KeYzt/QvMUWLyMFtHdbi4n3EWXs9l8R3rTduUt56kO6bX6P0pKL6nBtEceF1R/y3++79AUzMBnPGcf0nlbsRVhhXFk1MMbNyHV1Rf0OJPrKtQbO9MzjYW1Z/wD0tplzyUwv0H1FcyWZ8GEMAF5TpysNOabV0EbhYyOsegjX3K8/+aL8L2ANuVzz4qamiLh9EW5uNmt7ANXdgWUObbRgjAYGgue5zWaZi54a09HAanqWrgFFStdcU8sp+i1xcwP7W8ct+lX4KGMm/jTvH0nDKxvUy/kj+aBfrVp7msBzObYC+VgFuB0LiR67raGXE9dVvkDRJlY1nkQwgeLpbV/AaXGiqSOY1rQGNbK0m9hd2U6guceaqvxpvBhFvzLH/et9y87jWMPaDkbkHEm3rJ6VaRN1djcqJG/Sc0dVwU0EOGbxWs+uSAPWubHF3udcPB1vqLg8+HQmYjik8n0g4DgASGt6crb2b6F0uSNWnJnRDikd7R/hnC13G+UdHaFg45UXN6rEMrfo09NG0EDrddxv2rxUddUOORri0v0swZb9tkYlCW2HEtFnHm43uTdXFXbo2lvM9FTbRRxAtpmuYHcXyPdJIeV9dGm3QpqLEGuuXPH+0dSvER3cbNF7XcQB41gNT1gDXRa2FZb5X6A8+g9qOVDrGNeR7KhmBILTrcL0R1APSP7V5bDqTKbtfmF7W5j+Olepp/JH6VnM6rZFGoba5PAakrGqq4DyBc9J0H616SULyFYyznAcA4gdl1aZSIKiZzuLj2cB6lUn4HsKsPUM3A9h+5UWj7VnipX4QWYiY24e/Cw2tMshiiFKaW1QZJWuBjZu813Aiw1uFndzWDCGUcjdmH4fJCHuuaepNTH3xkAaKmVr3yE2DdCb24LQqsFbXYQ6ike+JldhXej5GBpfG2opd057A4EZgHEi+miwO5rsDh+zUFTIKshk4hdVVdbJDDG1lMJd0CQGsYBvpCSTrm6gF8vo/wBHxdqPfryOI9zrZaqn2uqG4+IZa5kr6+qZECaaURQRii3OcXdTNa6myh2tocrtQ5d87qcOPvbA3ZuXCYH55HVk2JmoJDGhm5jp44YXtdmJkzFxBAY0DyiRwCLuqU79rH4tFmOFMiZhu+DH5pqYRlr6psds1hO8uAsSWRDS7rDuXdH2VlxuCmmwjaGswzd53Mnw6okdS1kU2TSZtPMzeOaYxleHaZ3ixvp01K1i3yodtWtYt7Kn2IO7ZhLqnZut7/ZAK2lw51cTTue6GKvo4TO408kjQ/dFzHsuQCWSOBGpWf8AJNfmwKI9NVVn1vC5r3Ytga/CsHqams2sxuve91PSilNXPHTTMq544JmSxyzyGdu6kf4oLRYG9wul/JPZlwKIDgKqrt/TCNU03vtUxqmk96q7/BgbF92arq9qJsI73pWYWyeuoIHNZJ30Kigime+V8u8yGNxppwGBgsHM1uDfA+W5Tsa/B5wAJXOr6d7hYZog2nlaHdOV2cjo3juleM7io/vzk/1/tN/wYwvf/LTka04E97M7GV1U97LA52NZTucyx0NwCLda6KKjqRpg6qKhqxtx/I/uWYZtfHhcFNQjCaCnzSSw1GKiomrGwTuEjWRUsN2sZmdI4b3WzwMoAC7XsZS1zaRkeMzUlXW/hGzS0kLoqeaMvdkvDJfK7dlrXciQTYXsqG2mHuxjCZocMxN1Ea+CM0+JUt3ljDJHIcmR7XZXsa6N2VzXASOsQQs7uK4ZS4fSvwmDFBilZhshdiL3SZpo561z52NkYXuMQyghrXOJszVcJyuq+TqebUldWTonXBw75Lm0LaLHsTwq+Wlqa7EaalZc5WTYbVVQgaL8L0zZmk8zEwdC3+6psDv9s8KkDL0+KQtq6qw0L8EymZ0h5tdEcPi/2gFwWtxGWlxnEKmA2npdosSqIr3AzxYpUPaHW+ibWI6CV954FVQVsVLXwtDhLS7ynkIBcyKrbFI9t+RO7jBHSzqXp1qwamuqp6Hq166bWov7lT0/0cI+XHtTkoqTCYnfhMTn75qgOVHQuZIxrujPUmEjp73eulYcLbKM6tmAP/1S+Q+7XtR4Vx2vqmuzU1O/wfRHl3vRlzC9vItkmNRKD0ShfXtB/iqz/wAsD/pajUhbpx82c9XTs0o+bOW/IY2eiFFU4i5rXVLpm0MTzqYoIoYZpAw/RL3zC/SIWLUZ3ba07WuwYU1J4KZVtw9zy2Xvwzupw/fiTeZMu+cG5Mnk63uvH/It28p6VkmF1krIBVyMqaKSRwbG+d0bYpqYvdo17hHE5g+kc445QetN7idKNoHY8Kqa75RVGh3bN3322nFPvBNfMI9BJktfPrmy+Kt1aLUlf1W3+Ctai1JcTG342PAfLj2eiFNRYmxgbUNqfB87gLGWnmhmmizn6To5IDlvwE712yfEaelwdtXWsD6Whw2GulBY2QgUUDKpr2MdoZWuia5p0s5rTcWuvnP5a239PVupcHopWVDqSodW4i+JweyGVkMkNPSlzbh0tppXuF7syxji427Z3UR/eliP/liq/wCmvUSrw4p5ZEq8OKeXT0Pmjuyd2yfaSlhoI8FNGzwhDPG9taauectbNDFB3s2lZaRzpmnxXv1bYXvdds2Zwzbc0VJTsmwLDG01PHCZats9diMojGVhmbHeBjsgY02LiTckg6L5r7imJwUuLYXUVbmspoauN0r32yRh7XxtleTo1jHvY8u5Bl+S+zO7VsTUY1QMpaLF5sJ/umKeWeAPeKiBrJGmnfupo3GMl7H6OsTE24IXXtEVp0gls96vc7dpitO2CWz3q9zV2gwx9RhE9NiYgmmlwySOsMDHNp3z97neSQMkJcxm8Bc25JbYa3F1w/5BMxfSYi53F0tAT27mZdi2SfSDBjT4dWjEYMOo5sNdVCUTPfNRQmGXevboZczbm2njaaELjHyAP8CxD/xKD/kzLlD+nJfT9nCH9Ka+n7OU/KW/xpxjtw3/AKTQLwK998pb/GnGO3Df+k0C8Cvqdm/pr6H2ey/019AQhC7noBCEICwGpWs6lZYwKRoC8rJIY4lYZCpY8vSPWFYZl+s31hQ2YVhB1JRSE8loxhvSPWrULG9K5SMMqOiPRqnVWDki+lytSqr2Qht2lxde1rcrc/SqVTtAXeTE0HkXHNb0WUqVHUmauVCGmwVjdZ3sjaekknta0cSr1fikbGsjomlgZfPKdHyE8tPo81iSzueczyXO5Ho6gOQQzrSeq2jitNIvDEZtLzSnq3jgD1GxR3088ZH/ANN361WjFyBYnXgOJ6h1rZocEc6xlO6aeRsZP6P0fT6l5qN8jJNLmeu2AxPO0xuNi3Uanye0lb1ZXMGjfHd0N/WvM4VQMbpEzK02BeSS9wHIut7hYdS3oWtbwHa4q1o9Weeet4RjIJJeNmM59KvQU8bOl5HSTlUO/vwufc30dKe1mbyj6BoLdFl1ouh5XJ1qxayus0hoDtLBo0APWV4XazENQJZON8rGkhjbW1LT5XpXtpoSS7oyjKALAcb9p4LnO0eESyPJyOfYENy38XW/Rqoh88qLkju0oQq+bKD8VmjPiguaRoNRcdOn6FrUkck9LmeCC5zrgh1zkcRlPQDZMw3ZCpMIncxwhEgjyuJa4vk0aImu8rWxNlco5paImN7N7G5xzMzWLTwJY6xseHqWS1LJUe5Wnoqcarap5Kpw97HeKC3sJ4Hs5KzhtG/MS5tmc7XtqCQNexe7o8eo3+K7LE7oqoWkeiVmh9Nleq8PEoD2ujdHrk3WTdjpy5NCeC3U7QpKiRunoSjI5zMwtcHNGVzSLEX9PrWt3rFUNBa6zvpC13An6w6OsLTxLCAOX6Vi1NGW2LLtcPpA2PoI4Llp60o8j0T0oy5lebZ4CxL2uAJNmZsx08m1tB1poprEEtva3HqWhHiz2C0sYl/O8l1uvkT6FbpKqCXyTkfya8ZSD28D6Cuj1HJ7mx01FURm0D3iWzjYEi55C+vpXt6PEojZjXDQcSb3t1rzr8Ote+v8dighgLn3GgaDbkBobuPQALlUmzaJnrqmUBpd0An1BeSlN7nmSVvYhON3lB1cy462ggOPpKwXhdk6kFd6jeFM8KGbgexdDUVKiFzjcz1A6mzytAtpoA5UqnC2PLTKZJcpu3eyPkymx1bnJsdTw6V9oDZvBKbDhWVmFYYIaagbV1MpwynleI4qcSzSFrIS+R1g42AJPWVl7L4Rsvj1O+TDqKhkiY7dSOp6N+HVET8uYXAjikaSCCDax67Lzd4jztPH3qHO0+Toog0WaAAOQSROlizGmqaukLzdxpaqemzHpduXtzHtXodvcC7xxSsw6Nz5u9ZYhC4gGSSOpgiqIQQ3jIGzNYbAXLCQBcLQou5jjUzQ6LCavKRcb0R0zrfzKl7HD1L1XRaq6UZ7L4OKbpR5PA1dIZXiSpmqKqRt8r6meWoeL8bOlcSLp84cQAJZmAcBHLJGNeprgFt7TbO1lC8R19JPSveCWb1lmSAcd3I27JLXF8pNri/FS4VsdiNTCailoKmemGcGaNmZg3f8pzubWVfJTpQpWU6UPL08O7vkc9riXOLw9wfd18xzg3ubm56yo3U9yC+SaQtuW72V8gaTxIDybcl7HZ/ueYtWxNqKPDaianeM0c14omSN5OiM7271p6WXC87jeHTUz5IKqGWnnj0fDMx0cjbi4Ja4atIsQ4aEEEXCpOLdFSqKVjdFSqIWvqmNLYanEKaJ13PZT1NVTwuv5TnsicGuv0kLOpqQRhwifJGXm73RyPY5xuTdzmEE6knXpK+4O6O4jZavINiNm6kgjkRhztV8dbIbMV1ew94UdRWGJrDKYWZgzPmyZnEgAnK7TjoVx0dWM6tpKhw0daOpVySVDHoqMlwZE2SSSR/itaHSSSSPPAAXc95J6ySVaxvCa2mLG1UeJUJc0mOOdtZR5mtIzGNkobmaCRcgc17XYeixDCMaw90mFzy1rXSzQ4c4sZPURPp6iF7mC5ykMMrmk6Xh6ivS/Kk2vrq+PD45sBr8IpoaqSYVGIOg3k8u4fHuImQPcAzI9zzc6ljdNFctT5lFJNPzLnq/OoJJxfmcSp4GsaGsFmjgEs+d2hnqA3LlyCeUMy2tlyB1sttLL0eIbF4lDTCtmw+pjonNheKlzPwRbUOYyB1wb2e6SMDreOlacfcnx10W+GDVu7LcwuImzWtf/BXSCa/Vkv1Lq5Qpu0dnPTpu1T6o8JuW5clgW2sQRcEcwQrD66qLN0MRxEQWtuBX1Ygy/V3O8y5eqybM0tJDgWua4tc1wLXNc0kOa5rtWuBBBB4EL1mB9y7G6uJs1LhFW+F4zMe/c04e3k5jaqRhew8Q5oIIIIutlZT5qfc2dlPmp9zw9JSMjFmNAHDQKSoL3gh09QWuGUsM8uQttbKWZrFttLL3Du5NjwNjgtdcG2jIyPQQ+xHWFnbMbAYriET58Pw2oqqeNzmOlYYmtL2eWyPevaZnDmGB1jpx0S6DXNU+wu02uaovNHmGMAFhwGikfV1G73Ara5tNbL3q2tqW02X6ve4k3eXqtZNe0gkEFrmktc1wLXNc02c1zXC7XAggg6ghIVbinzOjinzIYISxmSKSWJnNsUskbSbAXIYQCbADsCdEHMbkjkmibppFLJHe3C+Qi6ekKWRwZZHBEyKxLi573utmfI9z3mwAF3OJJ0AHoUiEKkqcikkuQIQhDQQhCAmAPSfWjJ2qdsakbGvKySvHGr0UXQlgp+laMMHQoYGUsK16eDRNoqUlY+0FY7O6JrrMbobaFxsL5j0XuLdShohsjx2qbI8ZD4rAWjoPMkHt+5UWpgTmrmQyRiu4ZSmR1uAAu51r2HJUmBei2IyGR0b3BpkaC0u4Ocy53fpzf7qim5Mm0tjVwvDA3yQB+cdT61qNp7EHyjw18m/T6P0qUQkcdLaD+ApmBdq0VDwSqx8I/g/oAVpo6dfuVZsrRxcB2kD9KSTEYW8Zoh/tt/Woc0RYzRjNlM16hooTI0PZ4zTwcCLFSOjI4iy4vVRvDZYiF+HG448LdanjpQDwdFJc2eMr2O6LXH6lThqWtvnBItoG2vflx5JPC9jowEfnHX3cF5pNJ1TPTG6lJI13sdYOlkdKWA7u4aGsJBBc1rdM1uZXl8Xw9rusk3PTrx9K2IMRjcdTk6nDTsuEssjdfELgNSW66cb258FNanRbHiJNnw4nTQA/1LHlo56aRxpnvaB5QGsbudnsNwfSuiTTtcPweptrcEWHTqF5rF2ytuWWyN8u4I3jnOGjRxsB9y2pVSHD8eY8htUzcSED8IAdy4kDUgm7B16jsWhWYe3jxvr1W5WPNY9ZCZfo66cBoLC1h1CwU1CZoGWyiWPUiMkgs14NdyB6NQtRTKOK0o4AJuz+Ghz728RtibjxRYg6nsBstOKqikIzB7CeLSL27CP1Laj3dhldZo4A3A9VuK6xRjdAbh1wSOFtBxPBUPBvjXe4iNurhoL2OgNhrrbQrUfibQMsep5u/UvL7U4uS9tJC7x3DNO8HVhPkx6cHZQT1Zgu/Q57l58ZmlzMF2CNzbjgDY2b2/rWU8JuMYn3u6FsHlNIuLHxhoLEDUkq7ixvITa17EjjYlouF1hyD5me5QTjQ9hVh4UMw0PYV0TNPs+ppqWXCDHiL2R0EuF7utfJN3vGyldS5Z3PqA5u5YIy4l+YZRrcWWd3NcNwqmopBsw6hqYHOeQ+CvNVDLUNblDZqxjpnACwGmawvor9bgorsHdROkMLa7Cu9DKGh5jFRSbovDSQHEZr2vyWB3Je5xS7Ow1ThWGTvgQuqZ5xHTwsjphLkOXMQz+WfmcXa6cLL5nR7nxuj3+x8x47QYs/HKs1kdsdnrY37uiu8NeyKM0hpXEXdCyBkJa91iGx3dYh1voaafbaV7HwU+y9FC0MLqermr56iQi28D5qZhZGHa2DQct+Ll4nYfbajr9tJ6qJ7DRuoPBtDUOFm1FRGGPMrC4Cwf8A3TG0/SGW3lgLovds2BrMWdSbjHajB6GmE7q+OnfNC6dr90Wy72GVmsbWSgCS7RvM3LXtOfJNJbHo1J/9YtJbB8puhZLs/Xve0F9K2KqgfYZo5Yp49WnlmY6Rh/NkcOaqfJUdfA4z01VV/wAYVru74hDU7L4jUUssdRTT4e2WCaJwfHLE+SJzXseNHNI5qn8lD/uKL/Sqr/jClP8A42vM5p/8T+q/RjbF92Sap2llwVlFSx4XDLV0FPLGHipbPh8Mr3vdZ+7FOe9pWNjawFvinMdQPM/LbpWNfhNQ1oEsnf8ATSOAF3xNbBLGHHicjjJbo3z+leP7ig/vyl/1/tL/AMOLr2/y4fIwf/SK/wD5EK6qKjqRp1R3UFDVjb1R13ajCJazZ+ejpsnfFbgrqSEyEiNslTSblr5CNRG0vuba2BtdYeICl2P2fkfTU8tWKNjC7Kz8JWVk72Qiepe0WiiMjmXdwYxoAvZoPosbxp9DgU1bExkktDgr6uOOTMGPfT0W9a15brlJaAbarzHcL24ZtFhUkeJRwSVbY3U2J0wbaGaKcPbHM2MkkQyxhwtydHIOABPDeleldzzUdG/7a7nzv3BsQqa3amirsQmM9ZV1NVJK/g1v/Z9WGxxsud3CxgaxreQaBrxXT/lzn+5cI/1lP/6SReW2H2MlwbbChopM74d7UzUNQ8f4RSPoKzIS7gZmEGN/DVl7AObf1Py5/wDBcI/1lP8A+kkXqlTiwt5UPbJxerC3lT+TsGx9RHFgdFNO0Oip8Ho6h4IDtKekjmuA7TMMgI6CAvB/Jo7r1XtA6uFdR0tL3uKeel72MpO4ndM0xTmVx3krDG38I0MDs58RuXX1Df8AFX/8XP8A0pcW+Qn/ACuIf6HQ/wDNqFwUE4zb6fyeZQTjOT6fyQ90/CqUbeUkMzGCmrPBdVUtcBu5KhzqiFudp0IkfTU4I+kXG98xXUvlPY/jtHS0Ltm4ppJ5cQEdQYKMVrsgie6KGSMsdu4JJAGuf4ttBmbdcV+VNHE7ayFtRK+np34fhLZ52eXDC6srGyzM0PjsaS4aHVvA8F9P7QUuJ970zcCrMNGRgbJLi8FZiO/iyMEUjJ6asicZNHEudnz5wdLa1qOig3vtyK1XSMJPfbkYXyjdp6nDMBrKyiqBSVsZo44JTHHNZ9RW08D2tjlaWvdu5JLEg2tmsQCF86dx3u7S4HhjaA4YMQET6iWnlbVd7OvUSvneycGJ+Yb2R5zN1sQLaXPr+7x3MNqa+LvmvxOhxGmomvqBhtBDNRMaWtOaaKCQv76mDM1t5IXAFwYLuIOf3DO4fRYxhja+pr6uN88s7Io6R1O1kTYZHRDfb2F5kc4tz2Bb4r29q6aUdNabc89Dpox0lpN6m+/Q4NUVcs8tRUVGUTVlVU1coYCGNkqZnzyNY0klrM73WBJ0tqUinxSnEVRU04e2XvSrqqQyt0ZKaaeSDesFzZrt3mGp0dzUBX1I0ptyPswpRU5CFIUqFRQ1CcksgEQhCAEIQgNgRqRjOsKo1hUjWLyswusc0c79mq0qBubW1gsmJq28P4W6FJMtkWaucxxPc3i1twOV7gD714p5JJJNySST0k8V6vaFx3JaBcvc0egHMfuXmBTP+qVMjmhjQnNCkbSv+qVI2jk+oVxZjImhSsUjaGT6hUrMPl+oVzZg9mITcN9Lbrkf+tBqHnypHu7XuP6U5mGy/UKmZhcv+bK5SqS0ivbp4+tSAdYPYrXgib/NlTNwWf8AzZ9y5SMPQbDY+IrRSnxHeQfq68D0L2VeBbMDcHhZcybg0/8AmyF6bAKuojbu5mF0fAOvcjtXJhM0pXKs6ROxLxRmHA+5ZQqgeB7epc2UaQfqpqWcg9IPEHgsuOa/NWqeS6xMUN5jYyLtbr0DkVlYhvWm7Q17R9Fwv6jxCu0R6FfkdlFywO9Av711TqS9jEoaqN3lx5HAcjcH3Kaqc0i1vFPIcT1E8kkddSveWZg2W4GR4yO14WvoQekFXp6e3+TPqK7JNEOSZ5aeMX0ZxNgANVp01GGgGY8QDk+kOp3QppiWg5IiD05efpXkNp21bmSOPixNaS4k2vyDekkrrFGVKW220YzmKi/BtaLOkYbOe7nkdxDRw046rP2fjELDM/V1iW34udqb3PNZeEYa5xzO7SXdC24KGWqmZCG5Imi7iODWN8p3aeA7V2Qr1J9nKQvc6rl1DXEQh2uaTm7ra37+xakhv6VsOw02DY2hrGNDWN6Gj7z1qF2EP5kBdDEzHconrYdhJ+uFC/Cj9ceoqkXUyqmqqSbjEcSZoAGsr6prQBwDWtks0dQWfXUr57CpqaupaDcNqKqadoI1BDZXEArdkw0/WHqUTqAj6XuVKKwFCODMZA1rcrQABwA09OnNGK1VXOwxVGKYrPTuFjTT4jWT0+UcG7iWUstoOXJXn0v5wTXYe/TxXm7S4Wa7Vo4uGmrevgrtT5luMXzMqRkhiEAqattMGlvezaqZtMWk5iDAH5CC65tbibp3fNQxgZDW1tOxt7Mp6ueBlzxOSJ4F+tWHQ9aifD/HSqtWCrI4KVDnicXxzTMmc57zO2V7Zy+TNvH75pzZ3ZnXN7nMb8VHVb2QtM9XWVO7JLBU1U9QGF1g4sEzzlJAHC3BXJICCQbgg2IIsQRxBHIqN0apRRtiwR1tVUyBzH1+IGJ7Sx0PftTuXRkZTGYt5lMZGmW1rKKnlkiFoKiopyWhpfTzywPLQb5S+JwJF7aHoUrm9eqaIiTZoLjro0EnQEnQcgAT6Fqil0NsjghNRUZ2SOrq6SWIPEUslZUSSQ7wWfuZHvLoswABykXsLqCsfNKW98VdbUhji5jamrnqGtcRYua2Z7g020uFO4Jm7JBIBIFrkA2F+FzyvY+paoRwbZHAVFdVOGTwhiAiybvctrqoQ7vLl3e6EmXd5dMtrW0UNHPLC0tpqmppswAc6mnlp3ODdQHOhcCQLnTrSkJrgtsWDbI4Oi/JsraSPHoZ8YqXSudTSw0tTiE7phHVlzO97zVDjkOQ1DW3IGaUAauC+iO6rsNj1fVsmwnaiTCqMQMjNGymBAkDnF84mY68uYFviu4ZNDqV8XSNBFjqDxHG6WKpnY3JDW10EYFhFBWVMUQHQI45A0epebV7M5Suj+Dya3ZHKV0Wl5Uqj7Tx/a+LZnBwMaxg4riTIptzvWwxVmITuLjFFFTRaiJpcxpkdezRdzl8SbOYhWU9OIqbEMQo2PaBMyjramlZN4oZ+FZBI0SaC3jA6KIUTMxe675Haue8l73Hpc51yT2qdVo9mUK13qV2fsqhW7epBS07Y2hrRYBSlKUi9aPalQRCEIaCQlKkKARCEIARdCSyA2A9o5hG/HIX7dFXZGp42LymEjZD1DsWjhcpBtyKoRxFW4HZdRx5KGg2qFvE5ruA5NHvOp/QomKNovqVPE1a0cGTRqzGFDGFajC5NEtkkbVZjCiiCsxhc2iKk0bVZiChjViMrm0S2TxhTsUAKkaVyaMJSUjnJAkK4yRo14uFkV+Eh2rbtPUtgJtlzaNqePqKWaPyTmHpKigxWVh8ZhPYvYSQXVCowwHkiiiriDDtqYwfHu035r1mGY7DJoDmPMAFeSZgYJ4L1GC4UGa21VRRkpKhmbV7Ob78LT3bKzUfnD6p6Vn4LtJVRjLNG+VjNHAXMkf86+tu31roEcapYlgbJjmBdFKPJlj0d6RwcOor1I81TKo9oKaWwbKGuP0JPEdfo10PoVPaktkYI87QHEOcb6ADp9KlxPY6aYFr300gP+UdBllHXmYeKdQ7BtjZYzOcba2Fm+8m66JlI8Di7d05scTc5dYAt+kSbC1uldC2ewjcQtDwBI4ZpLcjxDb87XSUez8UDxI5xkey+QG2VpP0rc3K5UTF3UFaNqMnkA4KhO4lTyBQPVo1FZ6gkKsSBV5FaKR0CbCovBxod5TeEW0nhbcZJe/O+Ld8mHNushZ4NIOTPfOL5Vn7YYPRsixBsFIYZcO8EvbP3xPIZhXxtdMySORxa1gLxly2Pi6k3WBXbOTMijmc+m/DsilhgbUxOrJGTuyROZSA7xwJvwHI9Cyp8MqA5jXU1Q18+sLDBKHTf+E0tvLy8m6mMfM5wjvWvX/Z7mQSNwGmdHFWOY6HEXTmDD4JqRwZXS/4dWOcJaYZAQDHrbmFrbU448PxtukDYBgtIyVtRiDTT09S5gl3YFVliYAc27YGsdkGdr7uvympw6dhyvp6hjt42HK6GVrt89oc2HK5oO9c0ghnEgg2VaXDp7F3e9RkaQ1ztzLlDjKYQ1zstg4ytLLH6QI46LeEudfdSuEnu37qjo2JbIYeK2CmFLVMaayrjjJFRTwV8EVFLNSxtrKiV7JKiWeKJu8gyNLanRoIBWf4GvSVFsCZSVMWKYbvoy7EHVVDSSUs53+d8+8hjMguM923eLhxawt5/iNFLE7dzwzQyAA7qaKSOQB3A7t7Q6x5aarSxjZGrgyiRsLp3vZG6jhqqeevjke1z2MlooXulY4taTbLpzsdFtvL5vf5NspSsvf5PWYzs9RE4lVvY57MHrcairo5aqpklq3yyuZgZdI+UyBzp3uY5wN3d7Em5c4nL7pezdDSQuFLBU5mS0Ypq7c1RpayGWmc+V0lVLK6CWRzsr2d7tYGgPa4Ei68ZBh08uTdU9RKZs+5EUEshm3dt5ugxp3mXML5b2vra6fVbP1kcAqJKOqZTGWSASuheGCaJzGPjcCLxuzyNYMwAc7M0XLXAWoUa+YtQo183v3X2jodJhj6jC6Zk7ZMIoY24cKqWaiou86+KoxCJrq6kxNzN9HiAZKHOjJcC2IjQZmq9SbNw0tbTSNw9+FT987Q0kVO+pmqDW0MWA1748Qbv3FwGchhcy0bt4CBouSzYNUtk3LqOqbNlEghdTTiXITlEgiLM2Qk2zWtqoa3CKmJrnzUlVCyN4ikfLTzRsjkIDhE972gMfZwOU62PDVOH586+v3M4XS7nX1++/3PdYnsTFHR1Nayic6kZs5hdbSzulqNxLiM0lEyrAe2UOkPjVLXRg2ZmHkHIVubS7MU5q8TZLT+C8PfW7NshlppKqCmmoaurfFJWGN8zoJgGhwbJlyMLHOADi8u5HU4TUMMYfSVLDNG+WEPp5mGWJjd5JLEHM/CRNaMxc24AFzorOD7M1NRUPpWsbTzwwyzzNrXijbDDBHvZHTGotumhhzeNbQ3W2Pm5e9vPyLsfNy97efkdIm2KomzQGrwiXDiXY+HYa6uqnPq6XDcNfVUteyWR5khBmaWZm/g32uBa4PjNpKGjjnweeKkZTU2IUlJV1NI+oqZqdh7/qKaYCaWTeiJzIA43fcXOqx8T2VrIagU3ez6id8DKmIUVq5s9K8EsqIH0mcSwEX8YaDUGyqy4BVinbVmkqe83yyQMqd08xb2JzGPYSB4njyNYC6wc7M0XcxwFRjTe73+fdDYQpu5ev18/dDrUuxEL67EM+AGeUY8ylFBTz1tEykweeSoLMZDGzF2STLlDrinbutGNBsuNY9TRxVFRFBLv4IamoignBB30Mcz2RTXboc7GtdcaeNopZMDqxIYXUVYJwxrzA6lqBOI3ubGxxhLM4Y5zmNBtYlzRxIUkWzNc6OplZQVbmUBYKz8BIHUxeCWtljcA5pABcdPFb4zso1VQVvN19/UvTjbzdeXvmY5SFa1bgFQ2WeKGGeqFIAZ5YKSsDY2FgeHysmhZJAzjrK1vkk8LFVW4VUmIzikqjTtaHmoFPMYAwucwPMwZkDC5j23va7COIK63I7KSKJSJUi1GgUiUpFpoJqckKARCEIAQhCA2GNUzbJWRDmVOwALhQ5tkbATyViOnJSiWycJlhDJ46bpIViNjR1qm16mYVDJZcaRyCkYq8ZU0ZUshlmNTxlVmFTMK5slluMqdiqxlWIyuTRJaapFAwqYLlJAkS2TbpwK4yQFalDUrU9qiho0MUrIbp8TFs4XhjnWJGiKJjkUqWi52WvBRnoWpT0AHJXGxgcl1jE4ykZkdF0qbcAK49Z1XUcmntPFWkTUSdwCy6mYnhoFYe6/FVZAuiRSM+aNVZI+haMoVWQLpE1FGSMqtI1X3qCQK0UihIFXeFelCqyhWi0evm2lpzHh34ZwdQtw1s0Hgylc95pakSyvjxIyb5rcl7MtYlttMxKru2yDiHOqJxI3FcRqmSTQCsa2krKUQCB0Ukou1wztc0EZQ+41C8g9qrysWLTRPBie4g2jwwOy2rKeCnxSgxOFsMImEzqalZDPAGz1JdSxOkaXNu+TK025ACs3buOObD3t74fBR12J1VRBfI14rK2SeB7G5sr5mMeHDNazm6HmvDyBV5AqWkiloxN3aTHw6WjdC+OVlBZ0IFGaNoPfBqDG5pnlc9pfd18wtvHAdJ0PnBh0OJxYrDJXSOfiJrJ6KSmhaYGTOkkqGsqhUHvhwfJ4gyM0GpuvETP6FVeSr4a5F8NUp9vye+g2mooIqOlpaqZ8NNBisFU+twtksNZFXzUUohfSx1gcyK0B8ZsgcHQttYO0KXa/D4pKaaGOsa3Dcbqq+lpJWsnM9JWGiBElU+e8VREKVzxmElyWAu4uXPHBRv6k4MRwI9a+/wDZ0Z23EELGxQ1mJVckOG45BHiNSzdVJqMVFNuI2gTyOZFF3uSZM980ziA3gq+Jd0FsscjJZKqpa7BcGo2wTuc+F9dh9XRVM75A55s125m/CWLjn1Gq56VG9atGJS0I+/ydVq+6TB38ypjle2DvvE6/csoBDUwVFbhdXRROfU99vE7w+eJpLWsBETXcg1eI2B2kFJU1FRVXqHy4biFM3fs76bLUVFOY4hUtld+FhLrB1ydF5x6ictWlFKmdjY6MUqZ2OoHb+le6qLmmAV9DhMTWGjbNS4ZLhcj3Oo6enhnhL6B5O9Y4ODmPDLh1iVBTbfU29pqupM09Xh+PVmKbqOjiihroq91EJJNag951Efer5Ay0gLnNGYauHNHJhTgR9/j9G93j7/H6OkzbfMjbURxVUhBwevoaKSloX4e+GeurqWpkzuNZK8hwhlcXBws6R1gcxKq49tbSVcWJRSy1bH12G7PsZPuGzufW4PSuimZOHTtOWV7yBNdxAbctPBc9cmrVoxRq0Ir37wdjb3TaI1T5t/ilHHDjkeMxijiZfE2NoqSndRVgNQzcnNSkB53jckzxlvYrCpe6FGI6eIuqYqdmCY7QzUcV+9RV4nNiEtPkizBskTRPTAvIuN3oNFzYpqcCJi7PD39BEiUlIux6AKRBQtNBBQhANQlKRACEIQG4JE9rlACpWFcjkStUrVC1StKklk7FOwquwqZilklmMqZhVdhUzCoZLLMZU7Cq0ZUzSoZBajKsRlVGOU8blzZLLcZUwKqscpmuXJgnBUgKgClYuLQJWKeNqhjW5s/h5kOZwswH1noU2ktlvAMKzWe8eLyHSvTRsA4JsVgLCwA4DoVWsxNjdB4z+TW/pKpKhxbLxKrT1bW9Z6Ash9bIblz8o6AQAB2qn3/EDbex5r2tnbe/rVpGGlUVJdzsOgfpVdxTbpCVaQBxUEikUcosqLK8irSKxIq8hVI1FeRV3qeVQSLoikVpVWeFZkVd6pFoqyKF4U8gVWplDRcnsHP1K0WQy6cVm1E19BoPekqqguPVyCrWJ0GqtGiO7UOFuKmDMvWfuVaQm/H3Ki0Mkd1KFyk1SOWlELlE9SuUblqKInKNykeo3LTSMphUhTHLTUMKaU5NWmjCmpxTSgEKRKUiI0CkSlItAIQhDQKanJEAiEIQGu1SNKiaU8LkcmTtKlaoGlStKwxkzSp4yq7VKwqWSyy0qaMqs0qZjlLIZaaVOwqowqeMrmySywqeMqq0qaMqGYy2wqZpVVjlOwrlJGFlinjVaMp8lSyMZpHBo6zqewcSubRhsYRRGR1uAHErfxbHKaiYN7IGkDxYm+NI7saOHabBc7xLbVzWbujbuhbxpXWMh/mN4N7dT2Lx1VUOeS57nPedS55LnE9ZKkhqp6raXuhVM5LIP7li/NN5HD859tOwetechxSYHNv5S46El7r2PHms0lIxyxGWm34Rldo6WRw6C4keq69tsbgR0mmGmhjYRr/ON/csDYfCMxE07Lxg+I06ZyPpH80e9dHiqW9BCtEMnUbilMo5EJHK0YOg4orEQcU2sVI1FGRV5CrEirvVIpEEiryKw8KF4VopFZ6geFZkHq6V5+uxdriWxPbpoTcZj/NHJUih+JVwZcNs5/uHbbmsCaVzjcm5U7mp0FNm6mjiV0RSK0UZdwUkkjWaC9+brEp9XUZfFjaCOetj9yoyPvrlcOk6Ef7qopCTEHmD6dU1rL8Ljr5J8Lc3RYcSW6+/miVwboG6dXPtVFoje4DT71C4BPc8dY7QmWB7FpaGEJj09xCjcFpRE5McnkJhWmkbkwqQhMctRqIymOUjlG5aaNTSnJCgEKanJFpoiEIQ0RCLIQAhCEAlkiUpEB9Hjub7H/lVN7fhn7onDucbH/lTL7fhn7ouBNTmrycKXifoePgy8b9Dvre51sh+VMvt2Gfuie3ud7I/lRL7dhv7quBtKmYs4UvE/Ql6MvG/Q7yO55sl+U8vtuHfuqeO57sn+U0vt2Hfuq4SxqeFnCl4n6GcGXifod2Hc/2T/KWX23Dv3VPGwGyn5Sye24f+7LhLSpmFS9OXifoZwZeJ+h3RuweyvLaOT2zD/wB2T27CbL/lHJ7ZQfuy4awqaNyh6b8TJ4MvE/Q7g3YbZj8opPbKD92UjdiNmeW0MntdD+7riTHKZrutTw3lmcGXifodqbsTs1+UEntdD+7p52O2aAudoHgDiTV0IA9Pe64TWYsxmjfHd0cges8+wLIqqx8h8d1xyA0aOwKHB5ZnBl4n6H0QdnNl7f4yW6D35QadetOs2fYXZV5zP2omcek12He7+5dFwO6QlQ4PJnCl4n6Hdz3Ptkvynl9uw791TP8A4d7I/lRL7dhv7quFK3huHSTG0bdPpOOjWjrKmxmcJ+J+h2qPubbJOIDdp5nEmwArsNJJ6ABSLUo+5Jsy1wccbqZANcr6qhynovlpQSPSubYLhEcGoGeS2shAv2N+qFsMclnmS4PxM6ozZLAQLDGHgDgBUUth2fgU8bL4F+OH+0Uv7Fcsa5SArbHknhvxM6iNmMD/ABw/2il/Ypw2awT8cP8AaKX9iuYNKUuW2vLHDeWdQbs7gg/+cP8ATUUv7FLLs/gh44u72im/ZLl10l1Sg8scN5Z0qp2bwQNcW4u4uDXFo74ptXAaD+R6VzUvHSLpjioXBdIKnWp0hFrm6kjyFSr6lkbS6RwY24GuhJPANvzVXGsWipwM5BkdfKy5s21tZCPJGvpWDPWtlBcXNmc4W4gsYOhrQeC6Flqqrt5qSAy/ixtsSet5CzZ7OPjNBHRYcExtLGT5OU9LLtN/9ki6tQUQacznyEfRYcrr9RJbe3pVopEDKFhGbK6NvU8i/YBy9CirKggAMdZrdMpBdfrJvdLij3Eg5nxkcA3ybdhFietU3OkIu57H25OFnetpH3K0Uhj5HO1LGkDm029x7elPpmE8czWddteoWKkpYCfGe1rWjocSSewt4JKxxPBxbbkALekEKikMnkP0bADkQf0FV3PJ4t9Rv7ilJfzyO9GU/pSNbfiLDtFv61RaGAX6QOsJj39R9V/uUsj7fR05WI+5QueOsdo/StKRGSOpMLU/Q8LFMebcvUtKRE9yjUhcFG5aUhhCaSnFMK00aVGU96YVpo0pCnJrkA0oQhACRKkWlAUiUpEAIQhAIUiUpEBpNCe1vWkaFK0LmzmKxinjj7U1ikzWWGMc4Acz60NHaoc11ICpMJQ1SMaOv1qIFSMKlmE4YP4KkYwdfrUTHJ7SpZJZiYP4Ko4y8ghrbhtrm3M35+pXGOVTEI82oOoFrdPP1qGYZ4OibdSuk5H1FMFjy9S5slixhShycxjdLuIHTYE+gX1W/hDKZli1wLvrSaO9F9B6FLRDIcIwUvs6a7W/U4Od29C9TTQtY0NY0NaOACgidfgfUrLCpoQyVisNcqrHKYOW0JJ2vUgKrAqVpQE7SlzKFpS3QwlukUd0SPa1uaRwYwcS429A6T1KjR1r9nMngB1nkvNbT7SsivHCfHI1msSxt+THWyk9azcX2oEzt2x26juBu33jfJ0Z81vUEskLYPGeBJNxbCTmZD1yu5ut9H1rUDCimD3Xc8uBJLnNIe4ntvxUkdKHnyASeBsM39IKw6nEzvGjZJI45i7IQ5pN7tBt6dOjqUxkZT+LDcyHRzzI+RrdeEYc4jN+cOHLpVootU9G2HxnZy/kwyPLGaW1aT7lTq253Zi+QPsBdr3N0HCwBsB6FTBDnFxzNc4kucx723J4kgGzj2qw2N/KQk8hI1rve3KbelUjSN0b7X32a3KQBx9wBPrVilpj5UmS30Q3NcnrDtAPSVNTQEWdJk6WhmbXrObgOz1qvWMzOvme11gPFcWiw4DKNNFaKQlcCTe72EaDKSAOfDgfUqjs/wBe4/PAJ9bbfcnkScpA4dEjAfe2yWJrnXuGgDmHE37Glv6VSLRFE1x4hoHMhxPqFkkryODQW9pB+7VSTPcNGtaW9FyHdpNjf3Ku6fpY8egOH+6b+5UUNMnS1w9Fx7lGZAdAdejgfenmYHQG56OfqKY+45X6dbepaUhryRyv6VE5/SD6v1J5k6QR6Lj3JheOkeuy0pEZI6VGR/GikPT6lGT1FaahhTSn2THrSiJxSIKCtNGFCCkQCIQUIBCkTiEiIoRIlQVoEQiyEAiVBQgOS+G6rzyq9ol+JL4cq/PKr2iX4lnIX56+WWfl75ZZo+Havzyr9om+JHh2r88qvaJviWchL5ZYvllmj4dq/PKr2ib4keHqvz2r9om+JZyEueRfLLNLw/V+e1ftM3xI8P1nntX7TN8SzUJc8i+WWafzhrPPqz2mb40vzirfPqz2mb41loS55F8ss1PnHW+f1ntU/wAaQ7Q1vn1Z7TN8azELLmL5ZZoHHKs8ayqPbUS/EhuN1Q4VdUOyeX4lnoS5i+WWaXh6r89q/aZviSjaCs8+rPaZvjWYhKsXPJrM2mrh5OIVw7Kucfc9SDa3EfxniHttT+0WKhKsXPJt/O7EfxpiPttT+0S/PDEvxpiPt1T+0WGhKsy55Nz54Yl+NMR9uqf2iX544n+NcS9uqv2iwkJVi55N3544n+NcS9uqv2iPnlif41xL26q/aLCQlWLmbvzyxP8AGuJe3VX7RR1G1eIPtvMSxCS3DPWVDrdmZ+ixkJVi55NT5x1vn9Z7VP8AGmtx+sBLhW1YcTcuFTNcnpJzalZqEqxc8muNp6/gMRrgCCCO+6ixB4g+Pw0HqUfzgrPPqz2mb41mIS5m3PJpjaCs8+rPaZvjThtJXef1vtU/xrKQlzyLnk1jtPXcfCFdc6k99z3PLXx0HaWuPHEK09tVP8ayULbnkXPJqHaOt8/rPap/jS/OOt8/rfap/jWUhLnkXyyzTO0Nb59We0zfGj5wVnn1Z7TN8SzEJc8i+WWaXh+s89q/aZviR4frPPav2mb4lmoS+WRfLLNHw9V+e1ftE3xJDjlX55Ve0S/Es9CXyyxfLLNHw5V+eVXtE3xJPDdV55Ve0S/Es9CXyyxfLLNDw3Ved1XtEvxJPDVV53U/by/EqCEvlli+WWXvDNT51U/by/EjwxU+dVP28vxKihL5ZYvll/kveGKnzqp+3l+JHhip86qft5fiVFCXyyxfLLL3hip86qft5fiR4YqfOqj7eX4lRQl8ssXyyy94YqfOqn7eX4keGKnzqo+3l+JUUJfLLN4ksv8AJe8L1PnVR9vL8SPC9T51UfbyfEqKEvlljiSy/wAl7wvU+dVH28vxI8L1PnVR9vL8SooS+WWOJLL/ACXfC9T51UfbSfEjwvU+dVH20nxKkhL5ZY4ksv8AIIQhSQCEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEB/9k= in /www/wwwroot/temp.codingburgas.net/wp-content/themes/Divi/epanel/custom_functions.php on line 1519

Warning: file_exists(): open_basedir restriction in effect. File(/www/wwwroot/codingburgas.net/wp-content/uploads/et_temp/9k=-1080x675.) is not within the allowed path(s): (/www/wwwroot/temp.codingburgas.net/:/tmp/) in /www/wwwroot/temp.codingburgas.net/wp-content/themes/Divi/epanel/custom_functions.php on line 1540
Five elements to perfect your customer retention strategy

Five elements to perfect your customer retention strategy

It’s about keeping your existing customers engaged and satisfied with your products or services, so they continue to do business with you. A well-crafted customer retention strategy can transform casual buyers into retention forex loyal advocates for your brand, fostering a cycle of repeat purchases and long-term loyalty. Here’s how to develop a robust retention strategy and why it’s integral to the sustained success of your business. Designing an optimal onboarding experience for new users represents a key part of any customer retention strategy. These first interactions can make lasting impressions, so companies must view this initiation period as critical to their prospects of fostering future loyalty.

customer retention solutions

Five elements to perfect your customer retention strategy

In fact, 77 percent of customers surveyed in the latest Zendesk Customer Experience Trends Report https://www.xcritical.com/ say they’re more loyal to companies that offer a good customer experience when issues arise. Customer retention indicates whether your product and the quality of your service please your existing customers. It’s also the lifeblood of most subscription-based companies and service providers. Both customer acquisition and customer retention are part of a well-thought-out customer service plan and the key performance indicators (KPIs) included in that plan.

Establish loyalty with a one-of-a-kind product.

On the website, customers will find DIY kits and tutorials on how to care for their hair and skin with everyday products they can find at home or in the grocery store. They know their users are active on X and frequently update on the platform in case of outages or other customer issues. Exceeding your customer‘s expectations with something like an added gift Decentralized finance or benefit will give them joy they won’t forget.

customer retention solutions

Keep your products and services top of mind

Dia & Co is a clothing brand that specializes in creating clothes for plus-size women. After Dia & Co began its most recent referral program, its referral links were shared more than 50,000 times. Forty thousand customers shared those links, and in the first month, the program saw about 22 conversions per day. Imagine 60% of your one-time customers say they didn’t purchase again because they haven’t used the last item they bought. Enter these people into an email marketing series that focuses on product education.

Which Tool is the Best for Customer Retention Software?

Is there any knowledge or inspiration that your current customers lack when trying to make the most of your product? Review customer support conversations to find these pain points and a potential focus of your community. The same email also includes special offers and pricing for customers who add other one-time purchases to their order. CustomerGauge allows you to automate the process of capturing customer feedback across multiple channels. The platform’s powerful text and sentiment analysis features are useful in identifying emotions and trends in customer feedback.

Their Inside Buffer blog discusses operations and changes within the organization to make customers feel closer to the brand. Also, you should consider incorporating a loyalty program that rewards repeat business and customer referrals. Customer retention will continue to grow more important in the coming years as competition increases and customer acquisition costs continue to soar. By focusing on providing a great experience, you can keep your current customers happy while also attracting new ones.

A common shopping place for teenagers to spend their allowances, Five Below is teaching those of us in the business world some valuable lessons about customer retention. I think this strategy is effective because the service meets a common need and integrates itself seamlessly into users’ lives. For people who want to manage their reproductive health, Flo offers a world-class platform that predicts, analyzes, and tracks individual health data. Establishing a following for your product or service can encourage prospective customers to join in on the benefit of an active community.

For instance, if a segment of the customer base is particularly responsive to cashback rewards, the business can allocate more emphasis in that direction. A B2B (business-to-business) retention programme is a tailored strategy crafted to nurture strong, long-lasting connections between businesses. Unlike B2C (business-to-consumer) programmes that focus on individual customers, B2B loyalty dives into the specific needs and complexities of business clients. With points-based systems, businesses can customise incentives according to how customers behave.

It increases customer satisfaction and acts as a great customer retention solution. Implementing live chat can be one of the best customer retention strategies and significantly reduce the impact of the factor that adversely affects the customer experience. Equip them with the necessary tools, knowledge, and support to excel in their roles. Provide customer relationship management (CRM) software, access to customer data, and ongoing training. Empowered employees can deliver exceptional service and contribute to overall customer satisfaction.

  • To achieve this, teams can start by quantifying customer expectations in crucial areas such as support resolution time, feature releases, or shipping speed.
  • These metrics help identify engagement levels and where to focus to drive meaningful improvement.
  • Employing CSR activities in your business will improve your brand image and positioning.
  • These technologies streamline processes, improve response times, and create more satisfying customer journeys.
  • Regular communication can help build strong relationships with your customers.
  • As I mentioned above, your most loyal customers are also your most valuable ones — not just because of the money they spend but also for the information they provide.
  • These accounts help in tracking individual customer activities and accumulating points or rewards.

It proves to be one of the best customer retention strategies and help businesses to attract new prospects and also retain them with your business. Mapping your customer journey or buyer journey mapping helps to identify, structure, and improve the complex interactions that customers experience across their journey. It requires a comprehensive understanding of your customer base and a strategic approach to fostering long-term relationships. You can start by analyzing customer data to identify key preferences, behaviors, and pain points. You need to utilize this information to segment your customer base and personalize communication and incentives accordingly.

It’s about being one step ahead of potential problems through strategic, targeted engagement. A well-executed onboarding process demonstrates a clear commitment to each individual customer and sows the seeds for repayment through retention. Beginning with their initial purchase, users deserve consistent, straightforward guidance that seamlessly answers their questions and resolves their issues.

Let’s review some of the most useful customer retention strategies that the biggest brands currently use to inspire loyalty. Getting customers to create an account is a great way to learn more about them and offer them a personalized experience that will encourage them to make a purchase from your company. Another simple way to add a sense of personalization is by using product recommendations based on customer behavior. Customer retention rate is the flip-side to customer churn, which represents the percentage of customers a company has lost over a specific period. It’s thus equally critical to inform customers when their input has directly shaped decisions around product enhancements or service improvements.

Alternatively, you can try using a survey template for Customer retention that provides the intelligence you need to improve satisfaction and retain valuable customers. Making an impact with a thoughtful and prompt closed-loop feedback process sticks in customers’ minds and improves customer relationships. Engaged employees feel enthusiastic about their work, and they will leave no stones unturned to resolve clients’ issues, close a sale, or provide them with exceptional service. Using a subscription-based model is another customer retention idea to consider, especially if you are dealing with an e-commerce business. You can do so by assigning a separate help desk team consisting of professional customer representatives. Make sure to train them in understanding the customer’s needs and offering personalized solutions.

Tailor content to specific segments or interests for personalized value and continued participation, ensuring they feel valued and their preferences are recognized. Offering online and mobile capabilities for browsing, purchases, payments, customer queries, and other services allows companies to gather valuable data and insights on customer preferences and behaviors. Technology provides businesses with tools to understand their customers better, track their journeys and preferences, and automate customer service processes.

And while reciprocity works incredibly well on its own, research shows it’s far more powerful when it’s a surprise. The gesture probably wasn’t all that unusual, but the fact that it came out of nowhere likely left a strong impression on you. Uncover the drivers behind consumer loyalty and how innovative retailers succeed in this quarterly Pulse Report. Once upon a time, only human agents could analyze a customer’s profile and tailor their responses with relevant information. Now, a well-optimized generative language model can achieve this almost instantaneously – and on a much larger scale. Artificial intelligence has a long history of delivering personalized content.


Warning: Undefined array key "extension" in /www/wwwroot/temp.codingburgas.net/wp-content/themes/Divi/epanel/custom_functions.php on line 1471

Warning: file_exists(): File name is longer than the maximum allowed path length on this platform (4096): /www/wwwroot/temp.codingburgas.net//image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wAARCAL6At4DASIAAhEBAxEB/8QAHgABAAICAwEBAQAAAAAAAAAAAAIDAQQGBwgFCQr/xABXEAACAQMCBAQCBQkEBQcKBQUAAQIDBBEFBhIhQVEHEzFhCHEUIjKBkQkjQlJiobHB0RUWcoIkM0OS4RclU2Oio7I0RHODk7PCw/DxGCZ1lNInVWWktP/EAB0BAAEEAwEBAAAAAAAAAAAAAAABAgMEBQYHCAn/xABHEQACAQMBBQQHBQUHAwQCAwAAAQIDBBEFBhIhMUEHUWFxEyIygZGhwRRCUrHRI2Jy4fAIFYKSorLCJEPxFjNTYzTDJTXS/9oADAMBAAIRAxEAPwD8qgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2F4KeAfil8QW6VtTwx21W1GtTcXd3c807SxhLOJ16uMQT4ZYXOUsNRUnyP1l+F/8AJ1+E3gNC03Pu+lQ3pvSEVN3l5RTs7KbSyrahLKynnFWac+qUMtGo7S7aabszHdry3qvSEefv/CvF+5Mt21lUuX6vBd5+PO6fDrf2x7LS9R3nsrXNCtdbpSrabW1Gwq28LynHh4pUnOK40uOGWv1o90ceP2K/KseF8t5/DrQ3zZxbu9i6pSvJ8s8VpcNUKsV2+vKhLPaD7n46k2yG0a2n01XrioyUnFpccNcV/paYl5bfZam5zQABtBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF+n6ff6tf22laVZV7y9vK0Le2trem6lWtVm1GMIRjlyk20klzbYjaSywKD2Z8H35OjeXjtCz394nVLza2xKsY17ZKni+1eD4XHyVLlToyi2/OknnC4YyT4o+hPgq/JsaftOFj4pfETpNvf62+Gvpu2auKlvY/Zcal0vs1Ky5/mucI9eKXKH6FRxGKjFJJLCSXJI4rtl2nKi5WOiPL5OpzS8Id/8XLuzzMzZ6bn163w/U434d+G2xfCXatpsrw721Z6Jo9nHFO3toY4pdZzk8yqTfWcm5PqzkgBwurVnXm6lWTcnxbfFt+LM7GKisI+XuvbWk7z2vq+0Neoefput2NfTryny+vRrU3Ca58vsyZ/Pb4zeF2teC/iluTww1/jldbfvp20a0qfl/SKP2qNdRy8KpTlCaWXyl6s/omPz5/Kt/Df/AHn2pY/ELtbT+LU9uU42Gvxpxk5VtPlL81WaXLNKcmm8Z4KmW8U1jpXZftEtK1N2FZ4p18LymvZ+PGPm13GO1S39LS3484/kflWAD0qa0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+xtDaG5t/bl07Z2zdFudW1nVa8bezs7eOZ1Zv58kkstybSSTbaSbGznGnFzm8JcW3ySFSbeEV7X2tuLe24bDam09HutV1fVK0be0s7aHHUrVH6JL97b5JJt4SP2P+Cv4DdrfDtpttvffNvZ634jXFPMrnHmUNIUk06Vtlfbw8Sq4y+cY4i3xfc+C74LNsfDFtpa1rKttW3/qtHGo6ko8ULSDw3bWzayoLC4pes2s8koxXps867d9oM9XlLTtMk1QXCUuTn+kfDr14cDYbHT1SSqVfa/L+YAMcXscoMrgyDHEYyxOIpJvBpatpWna9pd5omsWdO7sNQt6lrdW9RZhVo1IuM4SXZxbT+ZtmG8DotweVzDmfgj8XPw8ap8NnjJqmyp06tTQ7tvUNAu5ZarWM5Phi5Nc6lNpwn7xz6SR0sfuh8b3wz23xK+D9zpmmUKUd3bf49Q2/XkucqqS8y2bysRrRio5fJSUJP7OD8NLyzu9Ou6+n6ha1ra6tqkqNehWg4VKVSLxKMovnGSaaafNNHqvYPadbSaanVf7aniM/Hul/i/NM1W/tXbVeHsvl+hUADdyiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTbSSy2AG7omiavuTWLLb+gadcahqWpV4Wtpa28HOpWqzkoxhGK9W20j9pfgd+CzRfhp2xHc+6KVvf+Ies26V/dLE4adSlz+i0Hj5cc/wBKS5fVSOBfk6vgppeEeiW3jX4naQv78atQctLtK6zLRrSpFrLWcKvVg/rfpQhLg5N1Ee5Tzx2i7dPUqktJ06X7GPCcl99rov3V/qfglnYdOsfRL0tRcenh/MAA5Fky4foRMTfPHYjl9xRcEwQy+4AMEnLsRAAXAPys/KifCr/dLcT+InY+mQp6LrtaNLcdChTjGNrfyeI3OF0rt4k8f6xNtt1D9Um8Hx927V0DfO2NU2dunTqd/pGtWlSyvbaeUqlKpFxksrmnh8muaeGuaNh2X2irbNajC8p8Y8pL8UXzXn1Xiu4r3VvG6puD93mfzhg7b+KH4etxfDX4sajsHV3O506f+l6LqDi1G9spN8Es4S4484TXSUXjKcW+pD1zZ3dG/t4XVvLehNJp+DNQnCVOThLmgACyMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfoD+TO+Dxb01e3+IfxH01T0HSa7e27KtBON9e05Yd1Ln/q6UotRTX1qnPOKbUvOnwc/DNq3xNeLFtt2pCvb7X0jgvtw30IvFO2UuVCMvRVarTjHqkpzw1Bo/dHRNH0rbej2G3tCsKNjpumW1Kzs7ajHhp0KNOKjCEV0Sikl8jkfabti9Mo/3RZS/azXrtfdi+nnL5LzTMxpdl6R+mnyXLxf8j6CkZy+5Ayng88Gw4J8THEyOUYk1gQMGPUEcvuOJhkcSBHiYy+4ZAllIi5djAEyAAACpHQ3xkfDHpXxN+FNxoFGFvb7q0fivdvX9SK/N18LioSl6qlVSUZdE1CeHwJP8NNd0PV9s61f7d1/T61jqWmXFS0u7atHE6NaEnGcJLummj+kJvJ+fX5TT4Q5bt0uv8Rnh7YJ6xpNuluazpQWbu0pxxG7XP7dKMeGSw+Kmk+Xl/W652Y7Yf3bXWj3sv2U36jf3ZPp5S+UvNsxGq2XpY+mguK5+K/kfloAD0Sa0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6G3dv6xuzX9O2vt6wqXuqatdUrKztqf2qtapJRhFfNtHzz9J/yVnw0cPn/ABKbss8N+dp+16cm0/0qdzdYxhr7VKDy/wDa5X2WYDabXqOzmm1L6rxa4RX4pPkvq/BNlm0tpXVVU17/ACPZPwq/D3ofw2eEem7GsY0a+r1oq812/gk3dXskuPEsJunD7EE/SMVnm233FkrTwZzjmmeQry8rahcTuriW9Obbb8WbnCmqcVCPJFiZlMgpGclYME84+RiRHJhvmLkEjICeQILgAAAwAMow5dgAy3gi3kGG8ABkhJKacZJNNYafVGW8mAHJYPxz/KC/B7U8B93vxH2Jp7/uFuS5fDTprlpN7LMnbtf9HLEpU36JJwf2YuXj4/ov35sba/iXs/Vtib00unqOi61bStbu3ny4ovmnFrnGUWlKMlzjJJrmj8M/im+G3dHwy+JlfZ+r+Zd6NeqV1oWqOKUb21zjnjlGpBtRnH1Tw8cMot+kuzjbT++qC0y9l+3guDf34r/kuveuPfjWNUsPQS9LTXqv5P8AQ6cAB1Mw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZPw6+CutfEB4u6D4aaO5UqV9W87UbpL/ySxptOvV9GsqPKKfJzlBNrOT97dr7c0XZu29M2ltyxjZ6Vo1pSsbK3i21So04KMI5fN4SXN836s8d/kxPh9j4b+FFXxb1+zlDcG+4RnbKeM2+lReaKSxlOrLNR83mPlck0z2opHmLtM2kes6o7Si/2VHKXjL7z93JeWVzNv0mz9BR35e1Lj7uhapEk8lSZniObmTaLU8GeIrUiWc+gDWizJHi5simYzkBEieTOX3IZMp4AMEsvuDDeBxIBMGQR4jGQDBJy7EQAHAAw2ABvodWfEb8PuzviQ8N7vYe6oq3uIt3GlalCHFV0+7UWo1YrK4o88Sg2lJPo0mu0TDZYtLqtY143NvJxnF5TXRhKEZxcJLKZ/PB4o+GW7/B7fWq+He+dNdnq2k1vLqJPip1YPnCrTl+lCcWpRfZ88PKXFT9t/jV+EfR/ia2OrvSKdvZ760GlOWjX03wxrwfOVpWfWnJ84t/Yk8rlKal+K2vaFrO19avtubi0y407U9Nrztbu0uIOFSjVg8ShJP0aaPVmxm1tHamy33iNaHCcf+S/dfyfDxenX9lKzqfuvk/oaIANxKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZcJRScotKSysr1RgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdsfC14KXXj9427e8PYwqrTalb6brFaEW/JsKOJVW2vsuXKnFvlxVInU5+rn5LHwR/ub4Xal4w6zaVaeq70q+RYqqklDTaEmoyisZXmVeNvPJxp0ml1ep7a69/wCntHq3MHipL1YfxPr7lmXuL+m2v2u4jB8lxfl/Pke37Gzs9Ns6Gnada0rW1taUaNChRgoQpU4pKMIxXJJJJJLkkjYyytMymeRm23lm9OJapEkypMymA1otTwZ4ivJlS7gNaLM49CKZhvkzCYCYLFIkmVJklIBGizII5M8QDcGQAAgBhy7GG8gLgN9jAMN5AUN9EYAAVIHiX8oP8FkfGHR6ni94X6RTW99Ko/8AONnQgoy1q1guXJL61xBLEX6yiuDm4wS9st4ImV0XWbrQb2F9aPEo9OjXVPwf81xRHXoQuabpzXBn83coyhJwnFxlF4aaw0+xg/ST8ov8FCmtQ+Ibwl0d8UVK53VpdtHOVzc7+nH2/wBrFL0XmY+23+bZ6z2d2gtdpLGN5avwlHrGXVP6PquJpN3azs6jpz9z7wADOlYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3l8OPwo728etRhqVSNXRtpUKmLrVqlP/W4a4qVvF/bnjP1vsxxzecRdHUtTtNItpXd7NQhHm3+S72+iXFlmzs69/WVC3jvSf8AXHuXidaeHfhnvjxW3HS2tsLQLjVL+ouKShiNOjDOHUqTeIwis+ra6JZbSP0K8DPye/h3seFDW/FSpS3frSSl9EacdNoSynyg8SrPljM/qvP2PRnfvhb4UbF8HttUtr7E0SlY20UpV632q93USw6lWp6zk/wXoklhHNYSz6nnHaztPv8AWJSttMbo0e9cJy82vZXgve2dU0fZC2sIqrdJTqf6V5Lr5v3JH5k/lIbexsPG7QdL0yzoWlpZbStKVKhQpqnTpr6VdtKMY8ksNckeUj1R+UhqcfxBWkc/Y25Zx/76u/5nlc7lsRn/ANO2efwJ/Hic72h//tK+PxAAG1GGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOU+Fvh/q/ip4i7d8O9DhKV5r+oUbKMksqlCUvzlV/swgpTftFn7+bV25ouzdtaXtHbllG00rRrOjYWdBNvy6NKChCOXzbwlzfN+rPzM/JSeEi1vf24vGPVNP47XbdstM0yrP7P02uvzso/tQorhftcL7v1DUjzj2ta19s1SGnU36tFcf4pcX8FjyeTc9AtfR27rPnL8l/MuTwSUilSJJ5OUGccS5P3JZKUyXEAxotyZTK08mUwGNFnERT6oJoin2AEixSJKRUnkkngBrRbkymVKXMmmA1onxIEMkk8ANwZMORhsAAbyAAFwDDeA3gi3kBR6mGw3giAqRicI1IuE4qUZLDTWU12Pyb/KA/BPPwl1O58Y/C3Sv/wAlahW4tSsKEOWjXE5YzGKWFbzbSX6knw8k4n6ympq+laZr2lXmia1YUL7T9QoTtrq2rwU6dalOLjOEovk4tNpr3Nk2X2mutl71XNDjB8Jx6SX6ro+nk2iteWcL2nuS59H3H85APUPxwfB7qPw47ve49qWlxceH2uV3/Z1dtzenVnluzqybcnhJuE5faisNuUZM8vHrHStUtdZtIXtnLehJe9d6fc1yaNIr0J29R06i4oAAyBCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASbeEuZ7i+Ev4MabhZ+J3jHpSlxKNxpWhV48sNZjWuYv7mqb/zL9FYLaHaKy2atHd3sv4YrnJ9yX5vkupldH0e51q49BbrzfRLvf0XU4p8KvwV33iB9E8QfFa0uLHbbarWWmSTp19SWcqU+sKL+6U1zWE1J/orpWn6fo+nW2k6TZULOys6UaFvb0IKFOlTisRjGK5JJJJIjCSwscvYuhI8o7UbVX+1N16e6eIL2YL2Yr6vvfN+Cwl2/SdDtdFoeioLLfOT5t/p3LobMZYLYvHNGvFlkZdDWi9KJ+ZX5RyOPiDt5fr7ds3/AN7XX8jy0ervyk1Pg8edInj/AFm1rWX/APtXS/keUT2NsPLe2ds3+4jg+0axqtf+IAA2owoAAAAAAAAAABtaVpOq67qNDSNE0y71C+up+XQtbWjKrWqy/VjCKbk/ZI9qeBP5Nbc+4Xa7g8b9WloGny+v/Y1jOM76osclUq84UeeG0lOWMr6r5rEavr2n6FS9LfVFHuXOT8lz9/LvZesdNudRnuW8c976Lzf9M8U2enahqLrLT7G4unb0Z3FbyaUp+XSgsynLC5RS5tvkka5+pPxdbd8OPhy+E3XdreG207LRP7z3FpoqnbwzVrZl5k5VqsszqPyqVWOZN4cz8tips1r62jt53cKbhBScY5fFpJZbxwXF4xl8uZLqum/3XVjRlLeljLxyXgAAbEYwAAAAAAAAAAAAAAAAAAc/8APDqXix40bP8PmvzGr6rRhdteqtYPzK7XJ81ShPGeWcEFzcU7ShO4qvEYJyfkllj6cHVmoR5t4+J+u/wP8AhjDwq+GzaWmVrSdDUtat/wC3dRVSLjPzrlKcYyi/suNLyoNcucOfPJ30pZNeGIRUYpKKWEl0RYpZPFeo3tTUrureVfanJyfvece46jSoxoU4048ksF6kSUihSJqRTyK4lykTyUqWTKkKRuJcpMkpdSlSJKQo1xLkyOebIqRhy5iDUi3i7mUypSJKQojRblGUyvKMpgNaLFIlkqyZTEGNFuUZK0zKku4omCZhy7GG2YAQGG8BvsRAckAAAoIt5Mt5MAOSPg762NtfxK2jqext56TR1LRtXoO3urequTXqpRf6MoySlGS5qSTXNH4lfFf8MO5/hk8Q6mgXir3229SlOvoOrShyuKCf+rm0lFVoZSml3UkkpI/dM4F43eC+y/Hvw91Dw83xZKra3S821uYxXnWN1FNU7ik+ko5a7OLlF5Umjd9iNr62y93ipl0Jv1o937y8V81w7msdqNhG9p8OElyf0P5/Ac/8cvBTeXgD4iah4d70tkri1fm2t1TX5m+tZN+XXpv9WST5esWnF80zgB6otrild0Y16ElKEllNcmmaROEqcnCSw0AATDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe0vg3+FeFz9C8X/EnTVKlyr6HpleGVP9W6qxa9OtOL9eUvThzhNf1602dspXl0/BLrJ9Ev64LiZfRdGudculbW68W+kV3v6Lqz7Hwf8AwjR01WXiv4p6Zm9fDcaNpFeKaoJrMbitF/p+jjB/Z9X9bCj7VhI1ISLoSyeTtotevNo7yV5ePwS6RXcvq+r4s7/pej22jWytrZcOr6t97/rhyNuEi2EjVhLuXRZrklgtyibcJFsWasJ9y6MhpXnA/On8pdQx4vbausf6zbcKef8ADdV3/wDEeQz2p+U20x0927G1rPK6027tfvpVYS/+ceKz192e1FU2ZtJL8LXwlJfQ4NtVBw1iun3r5pMAA3M18AAAAB9Xa+1Nx721y121tPRrrVNTvZqFG2tocUpPu+kYr1cnhJc20hs5xpxc5vCXNsdCEpyUYrLZ8o9AfD98GPif45So61cUpbZ2tJ5/tW9oNyrrCa+j0W4yqp5X18qHr9ZtYPT/AMOHwDba2X9F3d4xxtNf12OKtHSo/nLC0lz/ANZlfn5rl6rgTzhS5SPY9HgpwjTpxUIwSjGKWEkuiOUbS9o0aObbSOL6zfJfwrr5vh4Pmb/o2xcppV9R4L8K5+99PJcfFHAvBX4dvCnwJ076Nsbb8Ff1YOFzq13ire108ZUqmFwx+qvqQUY5WcZ5naUJGnCeC+MsnGLu4r3tV17iblN823lm8wtqdvBU6UVGK6I8JflUd2yhpewtjUakXGvXvNWuI55ry4wpUn8n5lb8D89j17+U41uN/wCOei6PTqKUdM23QVRL9GpUuK8mv93y3955CPSWwlsrXZ+3ilxacvjJv8sHIdo6jq6nV8Gl8EgADbjBgAAAAAAAAAAAAAAAAD23+Ss2DQ1zxc3J4gXllGtDa+kxt7WpJL8zdXc3FSj7+VSrx+U33PEh+s35MrZNbbHw6y3JdUoQqbr1i5v6Ul9p0KXDbxUv89Kq17ST6mg9peo/3fs7VjF4lUagvfxf+lMzez9v9ovot8o5f6fNo9fKZNSRrxl3JqR5VOhuJepdyalkoUu5NP3AY4lykycZlCkSUkxRjibCkZUihSZNSDIxxLlISfoyviMt8vUXIzBNSwSTKeIkpAI4lyZJSKVInlCjWi3KMplSkzKl2EGOJamZyV8RLIDWiaYbbIphMUbgyAAAGG8mG8gByQAAIUGG8D0It5HAdJfFh8Mm3Pib8Oam3ruVGy3HpnHc6DqkoNu2rtLipzxzdKokoyXPGIySbikfiTvXZm5vDzdWp7K3jpNbTdY0i4lbXdtVXOMl1T9JRaw4yWVJNNNpo/ojPJXx6fB9b+Pm0Zb72PYUae/tv0G6SjFRerWsecraTSy6i5uk31zF4UuKPU+zrbV6LWWm30v2E3wb+5J/8X17nx784XVtN+1R9NSXrr5r9f8AwfjuCy4t7izuKtpd0KlGvQnKnVpVIuM4TTw4yT5pprDTKz0gnnijTgff3hsDeWwLq0tN4beu9MeoWtO9sqlWOaN3b1IRnCrRqxzCrBxlH60G1zx68j4B+mf5Pvc+wPiV8DtY+GLxn0ew12W1M3Ok0rnKr/2fVbXHSnnjhOjUk48cGmo1acfRPOA2h1ipoNsr5U9+nFrfS9pJ8N5dHh80+eeawWrS3jcz9FnDfLu8j8zAeuPi+/J/7z+H93W+Nizu9zbC4nKdfy+K80pNtpXMYrEqaSX55JRy8SUeXF5HL2l6raazbq6spqUX8U+5rmn4EVahUt57lRYYABkSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAdy/DN8P+oeN27lU1CnVobX0qcZ6ncrMfNfqrenL9eXV/oxefXhTp6hf2+l207u6luwist/ReL5Jd5csLCvqdzC1to5nJ4X6vwXU598H/wAMn/KDfUfEvfdhnbVjWzY2lVctRrwfq11pRkufSTTjzSkj9B4YikopJLkkuho6Zp1ho+n22laVZ0bSzs6UaFChRgoQpU4rEYxS5JJI3EzyrtTtFc7S3rua3CC4Rj0iv1fV9fJJHo7QdBoaBaK3pcZPjKXWT/RdF088s2ISLoy5mrF4LoyNTkjLSibUZFsJGrCRdGRWnHBXlE2osthM1oS7lsWQtYK8onjj8plo1O42dsncWHx2WpXVmvlWpRm//wDnR+fx+nP5QHbk9c+Hu41SnLD2/q1nfyWM8UJOVu1+NeL+4/MY9T9k9yq+zcKefYnOPz3v+Rw/bmg6Wrylj2oxf0+gAB0o08AHoP4aPhO3B40XNHc+5PO0nZtKpzuMYrX7i/rU6CfpHk06j5J8lxNPFO/v7fTaDuLmW7FfPwXey7p+nXOqV1bWsd6T+S72+iOEeB/w/b88dteWnbZtPo2l280r/VriLVvax5ZSf6dTDyqa5vlnhWZL9O/BDwE8PvArQf7L2np6q6hXivp2q3EVK6upYWcy/RhlZVOP1V68223yLaO1tubH0Gz2xtTSLfTdMsYKnRt6EcJd236yk/VyeW3zbbOQU5nC9ptqrrXJOlH1KPSPf4y7/Lkvmdq0LZS30SCqS9er1l3eEe7z5v5G/TqY6mzCeT58Jl8J46mkTgZ2cD6EJl8J4NGE8l8J5K0oFScD8k/jsvZXvxS70k6jlGi7CjFN/ZUbKhlL78/idBnc3xkVXV+Jrfs301CnH8KFNfyOmT1ToEdzSbWPdTh/tRwXVXm/rv8Afl+bAAMuUAAAAAAAAAAAAAAAAAB+7XgDs6r4e+CuyNmXUIwutL0O0pXUYyylcOmpVsPqvMlM/Ezwv2zPeniVtTaEG4vWtbsdPclHi4VVrwg5Y7JSb+4/eqnwxiox5KKwl2OGds97iNpZp/ik/kl+cjdNkaGfS1n4L6v6GzGfcmpdma6kTUjhOTcnE2FPoyalj0ZrqfcmpMUicS9TJqXY11JE1LqBG4l6kSUihSJpgNcS5SJqXf0KFIkpL1FGOJNSw8dial2KZPDyZUhBHEvUiSkUKRNSFyMcS1SJcRTxEk+zF5jWi5PsZUipSJJ88ijGixSJZRVkkmINaLEw22QTJJgNwZAAuAABFvI4A3kwAKkCBhvoZbwQHDj84vykfwe/+WfEX4Z6Sl/tN1afbU/kvp0IRX/tvuqf9JI/OI/o2urW2vbarZ3tvSr29eEqVWlVgpQqQksSjKL5NNNppn41/HZ8Jtf4eN+f3k2pZ1p7D3LXnPT544lp9w8ynZzkkkkubp55uCay3CTO+9mm2P2qC0W+l68V+zb6pfd81071w6cdW1vTdx/aaS4Pmvr+p5dOzvhr8ZLzwF8ads+JVGpcuysLpUtVoW/OVxYVPqV6fC2lJ8DcopvHHGDymk11iDrl1bU7yhO3rLMZpprwawzXYTdOSnHmj+j+0utN17SqN5bTo3lhqFvGrTlhSp1qNSOU+fJxcX+DPzO+OX8nj/d2GpeMngFpNWppjlO71nbdCHE7TLblWtIrn5XPLorPBzcfqfVh3x+TE8ap+JPgK9iarXc9X8Pq8dNzOq5zqWFRSnayeecVFKpSS5pRoxx64XsTKfJnmChf6hsJrNSlSfsPEk+U481leKeU+az5o3KdKlqVupS68vBn82oP0W/KE/AnT0eOo+PngxoyhYRU7vcui20Eo2y9Z3lCK/Q61IJfV5zX1eLh/Ok9GaDrtptDZxvLR8OTXWL6p/1xXE1O5tp2tT0c/wDyAAZorgAAAAAAAAAAAAAAAAAAAAAlSpVa9WFCjTlUqVJKEIxWXKTeEku4BzOT+Gfh1uHxU3lYbM21Qcri7lxVarTdO2orHHVm16Rin97aS5tH6oeG3h9t7wt2dp+zNs2/BaWMPr1JJeZcVX9urUa9ZSfP25JYSSOs/hX8CKPg5sqN9rNtH+9OuQhV1GTw3bQ9YWyabX1c5k16yb9UoneKZ502+2peuXX2S2l+wpvh+9LrLyXKPhx6noPYjZdaJa/abhft6i4/urpHz6y8eHQtTJp9CqL6E0zm04m7SRamWRZSmTT6leUSJo2IyLoSz8zWi8lkZFecSKUTbhIthI1YSyXQlkrSiV5ROE+P22K29PBTem27ajKrcXOjXE7enH1nWpx8ynH75wij8dj9w2o1IShNJxksNPqj8bfGLZFTw48Utz7JlxOGlalVpUJS+1Kg3x0ZP3dOUH953fsW1Fbt1p0nx4TX+2X/AB+JyjtGs2nQu14xf5r6nDgD1Z8Jvwpy3pUtfErxIsJR0CElU07TqqaeoSXpUmv+hXRfptfq/a7NqepW+lW7uLh4S5Lq33LxNC0jSLnWrqNrarLfN9Eu9+H/AIRT8K/wj3HiBK18QvEm0qW+2k1UsrCScKmpdVOXWNH39Z9MLm/0DsLe00+1o2Fja0ba2t4RpUaNGChCnBLCjGK5JJeiRVRhTo040qUIwhBKMYxWFFL0SXRFyZw3WtauNbr+lrvEVyj0S/Xvf0PQ2h7P2ugW3oKCzJ+1LrJ/Rdy6eeWb1Op3NmnUwfNp1OjNmnU9zX5wMnUpn0YTNiEz59OpgvhU7FScClOB9CnUwbEKnvzPnwqF8KnRlaUCpOB+RXxgpr4ld+566jF/jRpnTp3Z8aVt9F+Jve8P17i1q/79pRl/M6TPUWhvOl2zX/xw/wBqPPerLdv66/fl/uYABlDHgAAAAAAAAAAAAAAAAd4/BFpi1b4p9gWssYp3txdc11o2tar/APAfs2pH5R/kz9GtdT+I6tf3FJSnpG3b28oya+xUlUo0cr/LWmvvP1VlXo01mdWEV7ySPNfa5WdfXoUor2KcV725P8mjpOyVLdsHJ9ZP8kjaUyxSNGF7aS5RuqMvlNF8akH9mcX8mctlSqQ9uLXuNkcTaUu5NSNZTyTjIYRuJsKRNSwa6l3JqTQZI3E2FIkpGupJk1IUjcS9SJqRQpklIBjiXZysGEyCmZb6rqKNwWqS6kkylPJKMhBrRcpElL3KlIymKMaLlL3JJ9UVJ5MqQqyMaLeImpFSln1Mp9hcDWi3JJMpUiakKMaLFIlkqJJijGiTeTAAuBAARbyOHBvJgAckKkG8HD/Fjwv2n4zbB1fw63pZ+fpurUXTcopeZb1Fzp1qbafDOEsST9OWGmm0+XN5BPQq1LepGtSeJRaaa5prkxZRU04y5M/ALxu8Hd1eBPiRq3hxu6hi5sJ8dvcRi1TvLaWfKr031jJL7pKUXzizgh+z/wAdfwu0PiF8Mp6rtywhLfG16c7nSZx5SvKXrVs2/R8eMwz6TSWUpSz+MdehWtq1S2uaM6VWlJwqU5xcZQknhpp800+h6p2N2nhtNp6qy4VYcJrx714S/PK6GhanYuxrYXsvl+nuPRnwAeMn/I98SOgVL64p0tG3U/7valKo8RhGvKPk1M5xHhrRpZb5KLn81+3CZ/NxGTjJSi2mnlNdD97PhU8W142+Ae0d/wBetSnqNxZK01RQlnhvaDdKs2vWPFKHGk/0Zx9fV897WtH3KlHVaa5+pLzXGL96yvcjJaHXzGVB9OK+p25KMKkJU6kVKMk4yTWU0+jPyS/KFfBZLwf1m48Y/DHSsbI1a4T1Cyt6b4dFuqkscopYhbzk0o9Iylwck4J/rWmaO4NA0Xdeh3+2dyaZb6jpWp287W8tLiCnTrUprEoyT6NM53sxtJcbNXquaXGD4Tj+Jfquj+jZlbyzjeU9yXPo+4/nHB358Y3wuax8MniXU0q3jc3W0dZc7nb+oVFlypJ/Wt6kkkvNp5SePWLjLC4sLoM9UWF/Q1O2hd2st6E1lP8ArquTXRmlVaUqM3TmsNAAFwjAAAAAAAAAAAAAAAAAHq/4I/AyO4NX/wCVzc9m5adpVVw0elUjyr3UfWthrDjT9E/1/wDAdAeE3htq/ixvvTdmaSpwVzPju7hQco2tvHnUqy+S5LOMycV1P1R21t7SNpaDYbZ0Czja6dptCNvb0o8+GEV1b5tv1bfNtts5x2hbRPTrX+77d/tKi4+Ef1ly8s+B0vs72b/vG5/vK4X7Om/V8Z/pHn548T66ZZF9ClPoTTOAyid2aLkycWVJk0+pWlEiaLU+pNMqT6k0yvKJG0XReCxPqUJ9CyMitKJE0XxkXRkaqeC2MyCUSGUTajI8K/lFfCmpb6no/jDpVqnQu4R0nVXCnzjVjl0Ksmu8eKGX6cEF1R7mjLPzPm7r2toG+dt3+0t0adC+0vU6Xk3NCba4o5TTTXNNNJprmmkzN7K69PZnVad+lmK4SS6xfP39V4pGB17SY6xYztXwb4p9zXL9H4M/Oz4TPhkl4lX1Pf8AvmynHatnU/0a3qJr+06sXhr/ANFFr6z/AEmuHpLH6EUYU6NONGlTjTpwioxhFYUUvRJdEbmlbS0TRtOttI0mh9DsrOlGhb0KMYwhTpxWIxiksJJI3o6Haf8AS1vxX9Dcdb28oa3curUbUV7KxyX6vq/oT7PaTZbPWioUuM3xlLHFv9F0X1yfKTwTjI+stCoPkq9RP3SMPb8v0LtP2cMfzMTHXbCXBzx7n+hm3dUX1PnJltOp0ZtvQLxJuNWlLHu1/IplpeoQWXbSf+Fp/wACxDUbSrwjUXxx+YnpqUuCkiynUNiFTB89eZSlw1ISi+0lguhU9yWUVJZXIjnDPI+lCoXQqdzQhUL4VM+jK04FSdM/M78oNt9aP8Q9xqaef7e0iyv37OKlb4/C3X4nmo9oflLtFnT3TsjcqWY3mn3Vi2l6OjUhNZf/AK9/gzxeeitkq3p9Ft5d0cf5W4/Q8+bUUPs+r14Y+9n/ADJP6gAGxGBAAAACVGjVuKsaNClOpUm8RhCLcpPskvU7Q2j8Ou/tycNfVKFPQrR8L47tZqyT9cUlzTXaTj6/PF2y0671Gfo7Sm5vwXLzfJe8tWtjcX0ty3g5Pw+r5L3nVpv6Pt/XNw3P0PQtIvNQrYy4W1GVRpZxl4XJc1zfI9WbU+HPw92/itqNrV1u55PivJfm4teuKccLD7S4vT5nZ9hp1lp1vC00+zoWtCmlGFKjTUIRXRJLkje9P7OLutiV7UUF3L1n9EvmbbZ7FV6mJXU1HwXF/p+Z5K2/8NXiVrMPOvrey0iGVhXdfM5Luo01LH+bDOwtI+ErRqcIvXt3XtxN4co2dCFFLlzScuPPPrhfI7+jHsiyMDcbPYPR7b24Ob/eb/JYRsltsnplBetFzfi/osI600r4d/CnTaMKc9uzvakVh1rq6qylP3ajJQz8oo5RpvhtsHSeCWn7L0WlOn9mp9Cpuov87Tl+85Mooko9zYaGi6dbLFKhBf4Vn44yZmlptpQ/9ulFe5FNpa29hJzsqNO3lJcLdKKg2uzx0LpOU3mcpSfdvJJR9jPD3MhGnCHspIuqKXBFfD7E4Va1P/V1Zw/wywZ4UZ4fYc4qSwxcG7Z7i3Fp74rDXtRtn3o3U4fwZ9+y8XvEvT0o0N3Xskv+m4a3/jTOJ8K7GOFGFv8AZrRdU/8AzrOlV/jpwl+aY1wi+aO19K+JXe9nThS1Gw0y/UcZqSpyp1JfNxfD+ETmujfE9tu4UIa5oF9ZTbw5UJxrwXvz4X+5/eec+Ei4nOtY7B9gtZTcrFUpPrSlKGPKKe5/pI5W9OXQ9paB4mbE3LOFHSNz2VStP7NGpJ0qjfZRnhv7kcojL35HgRxZyXbniXvnanBT0bcV1ChB5VvVl5tL3XDLKWfbDOKbR/2UMJ1Nnb/j0hWX/wCyC/8A1+8rTs/ws9spkk2dAbV+KKhNxt946C6TbS+k2L4or3dOTyl8pP5Hc23N37Z3ZbO627rVtfQX2lTl9eH+KDxKP3o837Wdmu1GxLb1i0lGH4161N/445Sz0UsPwKdSjOn7SPuKWSSb9CpMnGWTRSBompZJJlb/AFvxCn3H8xrRcngkmVZRJSaDAxxLVImnkpUskkxUhriWp9iSkVJ+5lPuOwMcS5PJJMqTRlMMDGi5MypFSkTUhcDGixSJZRVkymOwJgk3kwACQiQMN9A3gwPSHAAw3gcBhs/LH8pf8MEdj7pXjxszTlDQtyXCp63RpRioWmoyXKqopLEa2G2+f5ziy/rxR+pp8DfWytu+I+0NX2Lu2xV3pGt2s7O7pZw3CS9Yv1jJPEoyXNNJ9DZdltfq7OajC7hxhymu+L5+9c14ruKt/ZxvaDpPn0fcz+ek/RX8kb4qu21XeXgveyXl3lOO47DnjFSHBRuI46txdBrHSnL15Y8T+Ong/uHwJ8UNa8NtxRlOpp1bitbrgcYXdrPnSrRyualH1x6SUo+qZu/DX4mrwd8dtl+IlWpOFppWqU1fOCzL6HVTo3GF1flVJ4XfB6O2isqW0mhVadB7ynHeg11a9aPx5e80e0nKyulv8MPD/Jn79p9SSZTTqRqQjUpyUoTSaafJruWJnk1m7nW3xEeBW1viI8LtT8OtywhSqVl9I02+VOMqlheQT8utDKePVxklhuEpxys5Pwl8Q9gbo8Ld7ax4f7z092esaHdStbmnz4W1zjODaXFCcXGUZY5xkn1P6IzxB+Uv+Fv/AJStkrxu2ZpqlubadtJapSpRbnf6ZH6zeOs6P1prq4Smm3wwR07s32rek3f923Uv2NV8M/dn090uT8cPvMPq9j6eHpYL1l80fkyAD0WakAAAAAAAAAAAAAAA7d+GDwl/5V/Ey1oahQU9E0Xhv9S4k+GpGMvqUcrrOXJrl9VT7FW+vKWn207qs8Risv8ArvfJFzTrGtqd1Ts6CzKbwv18lzfger/g58HF4ebCW7datVDXdzwhXlxwanbWnrSpc/Rv7cvT7UU/snoVPoUwSilGKSS5JLoWJnmHVr+tqt3UvK/tSfwXReSXA9WaXplHSLOnZUF6sFjzfVvxb4lqZNMqTJp9TESiXGi1PqWJlKZNMrSiRNF0XgmmUp9CyL6FeUSNotTJplSZJMryiRtF8ZE0yhPqWReSvKJE0XxkXRln5mqmWRkV5RIpRybcZFsZZ9TVjLPzLYyIJRwV5RNuMujLYyzyfqakZZLoy6MYQSibcZFkZGrCeeT9S6Ms/MUryiX4hOPDOKlF9GslFTSbCty8ny5dHB4/d6FkZFkZfgT0rirQeacmvJke9KHsvB8ytodenmVtUVRL9F8pf0NNqpRlwVYShJdGsHJYy6dRWoUbmHBWpqS6Z9V8jNW2u1Y8K63l38n+hLC8kuFRZPHn5QzbdbWfBOz162t/Meg6zQrVp/8AR0asZ0m/vqTpL70fm8fsr49eG93vjwj3btTT4KvU1DS6ytov1+kQXHST9vMjHmfjXKMoScJxcZReGmsNM9Fdmmp0r7TJ0qcs7kvgpLPH35OS9oNsoahC5hynH5x4P5NGADl2w/C/dHiBcpaXbeRYwlw1r6smqUO6XWcvZd1nCeTptta1ryqqNvFyk+SRpFC3q3VRUqMXKT6I4nTp1K1SNKlTlOc2oxjFZcm/RJdTt3Yfw5bm3Cqeoboqy0WybT8mUM3U4+v2Xyh2+tzX6p3V4f8AhHtTYVOnXs7VXmpqOJ39eKc84w+BelNPnyXPDw2znkY45YOp6H2fQhitqjy/wJ8Pe+vkvizf9K2OhDFS/eX+Fcve+vu+LON7O8N9n7HpRjoGj0qdfg4J3VT69eouuZvmsvnhYXscrjExCJdCHc6VbWtG0pqlQioxXRLCN3o0advBU6UVFLouAhAtjDJmMfYsjHBYSJBGOCaiZUSaQo7BFRJJdkSUSSj3ACKiZ4fYmkZURRSHCZ4UT4TPAAFfCY4S3gMcIAVOPsYcS1xZhrugApce5FxLnHsRcRBChxLbK9vtKu6eoaZeVrW5ovip1qNRwnF+zXMOJBxGVKcK0HTqJOL4NPimn0aEaydx7H+JjXdJ8ux3pZvVbZcvpVFKFxH3a5Rn/wBl+7PQW1t57a3lZfT9uatRu4L7cYvFSm+0oPnH70eFpRNjSdY1bb9/T1TRdQr2V1S+xVoz4ZLuvdPqnyZ542+/s57PbTKV3ouLS4eX6q/ZSfjD7vnDCXNxkVKtrGfGPBnv6Ms8iL+q8M6G8N/iVtL6VLSPECMLS4bUYajSjijN9PMivsP3X1faJ3vRrUbqjCvb1YVadSKlCcJJxkn6NNeqPEu12w2u7CXv2LWqLhn2ZLjCa74y5PxXCS6pGOqU5UniSLFIkpFOcP3JqRqmCNotTJplOSSlgXBG0WqRNPJSpZJJ4FSGtFqfYkpMqz7mVJoXAxou4iSkVKZnKFSGNFyfYymUqRJSFwNwWqRLPIqTJJ4FwNwSAAohhvBEN5MNjkhyRhswAPFPIf5Rz4c14s+Ff/KPtyy8zc+x6NS4agm53Wnfar0sL1cMeZH5TS5yPyJP6MJJTTi0mnyw+p+Kvxx/D5LwC8ar230m1jT2vufj1XRODPDRhKX5225r1pzeEk39SVNt5bx3Hss2ic4S0W4fFZlDy+9H3c17+41XaGxxi6gvB/R/T4H6m/Bf4mT8Vvhq2TuW71BXepWtj/ZOoyc+Kp9ItZOi3U5t8c4whUefVVE+p3emfnJ+SJ8RVOy334T3MsOlVobhs1z5qSVC4z0WOG2x34n2P0ZTwcv2w03+6dbuLaKxHeyvKXrL4Zx7jJ2Fb7RbQm+ePy4FieTFSnTq05UqsIzhOLjKMllST9U11RhPJk1hlzB+J3x3fDVL4ePGGvLQbGVLZ26fM1DRJJfUoPK860z/ANXKSx+xOn6vJ5tP3Z+LvwAsviK8F9W2dClSjrtknqOg3Eopune008U8trEakc05POFxqWHwo/Cu7tLvT7utYX9rVtrm2qSo1qNaDhUpVIvEoyi+cWmmmnzTR6g7PtpP/UGmKFZ5rUsRl4r7sveuD8U+80vVbP7LWzH2ZcV9UVAA3wxYAAAAAAAAAAP0o+Fzwsj4X+F1nSvrd09Z1vGo6jxesJSX5ul7cEMZXP6zn3PGnwueGUfErxVsKV/bQraTouNSv41I8UKkYNeXSa9HxTccp+sVI/SeLycq7RtWeIaZTf70v+K+vwO09lehcKmsVl+7D/k/ov8AEWpliZSmTT6nI5xOxtFyfUmmUpliZWlEiaLUyafQqT6E0+hXlEjaLU+hNMqTJpleUSJoti8k0+pUn1Jp9ivKJG0Wp9UTTwUpk0yvKJG0Xpkk+pSngsT6oglEjaL4yLYyz8zWT7FkZEEokMom1GXUtjLJrQkWRl1K8o4IJRNuMujLYTzyfqakZZLoy6MaQSibcZfiWRkasZZ5P1LYyFK8omzGX4FsZe/M1oyLIyFTwQSibUZfieY/ic+CXaPjJSut27Ghabe3m3KrUqKHDa6lLm2q8Y/ZqNv/AFqTf6ylya9LxmWRkZXSNZvdDuVd2FRxmvg13NcmvB/mY++sKF/SdG4jmL/rK7j8mNn/AAv69o2tV6fixptWwq2VRwWl+YuKo0/tTnFtcD544Xz5PKXr3tp9haafa0rKxtqdvb0IqFOlSioxjFdEl6HsXxE8NtF8QtN8q6jG31GhF/RbyMcyg/1ZfrQfb70eWNw7Z1jaerVdF1q1dG4pPPeM4v0lF9Yvv/NH0L7EO0DQdrtP+z28VSvoL9pBvLl+/B9YZ6c4Pg+alLG2Ok22kU9yhHnzb5vzf9I+dTi8ehfCL7EYRNinDC9DvaRd3zMIehdGJiMWuhbGIqQb4jH0wWRj7CMS2McjsDlMwok1Eyo9cE1F9RcDlMikSUSSiiSWfUMD1IjhGUiXCuxnh9gwPTTIY5GUmTwMLuA7BBxZjDwT5dzOF3AMFbRjBZwkXEBMFbiRa7lrWDDWRBMFLiVtdy9xIOICFEolco5NiUSuURBGjWlHBzzw08Zdy+HNxC045ahozl+csak/sJvLdJ/oPLzj0fVZ5rhEo5KZR6GG17Z/TNprGem6tRjVoz5qX5p8010kmmujI5RU1iR7s2fvXbu/dIjrO3L1VYclVpS+rVoy/VnHo/3Po2fbTPBe1d3bg2RrFPWtu30revDlOL506sesJx/Si/3eqw8M9deGPixoXiZp8pW2LTVreCd3Yyllrpxwf6Uf3rr6rPgTtY7Eb/YKUtS03Nawb9rnKlnkqmOa6Ka4Z4SSeM42tbulxXI54pEkyhSJqRwndKziXKRJSRSpElIVIY4lykSU+5SmSUhUhjiWqWSSkVKSMqQuBriXJ9iSkUqTRJSFwMaLlJehnJUmSTFwNaLVIy3krTMp9mGBmCTeCJn1MDkgBhvoZbwRS6sckKkPQ6C+NnwF/wCXzwP1PSdLtfN3JoLer6HjCdSvTi+Ohl9KlNyillLj4G3hHfrZH1Zf0+9rabdU7ug8Tg017vo+T8BlWlGvTdOfJ8D8XPgA3/deHfxVbQ4rtW1puCpV29fQnhebG4jilB59H9IjbvlzzHHU/bPLPxu+Orwku/h7+JOjvnalKVppO4rmG5NJnQg6cba8p1VKvShJck41UqixjhjVgscuf6+bV3Fpu79saRuzRriNew1qwt9QtasfSdGtTjOEl84yRvnaU6Wo/Y9bt16taGH4OLzh+K3mv8Jr2kRlbupaz5xf5/1n3n1kyaeSpPBJPscrZmcEz8jPynfgEvDfxco+Kmg2dOloW/OOrXjTTSo6nBLz8rGEqicai55cnV5LCz+uaeTqD4sfBO28ffAvcWw1S4tUhR/tHRZpR4oahQTlSScuSU/rUpPpGrI2vYrX3s/rFOvJ4py9Wf8AC+v+F4fux1KGo2v2qg4LmuK8/wCZ+DgJVqNW3qzt7ilOlVpycJwnFxlGSeGmn6NPoRPWXM0UAAAAAAAAcu8Jti1fEjxE0PZ0VV8m+uo/Sp0/tU7eP1qsk3yTUIyxnrgjrVoW9OVWo8Rim35Intrepd1oW9FZlNpJeLeEe2/g88Ov7keFdHXL2i4ajuma1CrxRw426WKEfdcLc/8A1rO+IvBq21CjaUKVrb0406VGCp04xWFGKWEl7YL4voebdUvJ6jd1Lqpzk8+S6L3LgevtK02npNjSsaXKCS831fveX7y9PqTTKYyLEzFSiW5ItTwTT6FSfQmn0K8okLRan0JplSZNMryiRtFqZNPqVJ9SaZXlEjaLU+qJp9SpPqTTK8okbRamTTKU8E0yvKJG0XJk4ywUp9CafRleUSJouTJplMZYJpkEokbRsRkWxkaqZZGWSGUSKUTajLqWxlk1Yy/EtjIryjgglE24y6MtjLPJ+pqRlktjPoxpBKJtxkWRka0ZZ5P1LYyHFeUTYjItjPJrRkWKQEMomzGRx3few9H37pLsdQiqVzSzK1uorM6M/wCcX1j19mkz70Zlil2MlpOrXuhXtPUdOqunWpvMZLmn9U+TT4NZTTTIZQT4HjvcW19W2nq1XRtZt/Lr0ualHnCpF+k4PrF/1Tw00aUYnrPeuydI3zpL0/UI+XWp5lbXEV9ejPH74vrHr7NJrzJuPa+rbT1WppGsUOCrD60Zx5wqQ6Si+q/+z5n0h7H+2Cx7SLP7Nc4p39NevDpNfjp56d8eLg+DysN4ytTdJ56HzIp9i2MTEYlsIt9DtyRDvmYxLIx9DMIliSDAqmYUc9CcY45GYxJqPsLgcpkeBdUS4TKiSx3DBIpkeEcPuTwMCYJIzIcPtkcLx6IswYwuvMME0ZlfCxw+xZwrszDivdDcEikivBj5osw+mGRwA7gQx2IuJY0Yxn5gI0VNLqRlHBa0Ra6MMDWihrJCS6F0kQkhBpRJFU4mxJFUl0EGs1ZxLdJ1jVNvanb6zo17UtLy1mp0qtN4af8ANP0afJrkzE4mvUiQV6FO5pyo1oqUZJpprKafBpp8GmuaE5nsTwj8XtO8SdO+jXPl2uuWsE7q2Twqi/6Wn3j3X6Oe2G+xFL3Pz90nWNT29qlvrOjXlS1vLSaqUqtN4aa6Pun6NPk02mexvCjxQ0/xK0L6SlC31W0SjfWqfKL6VId4Sx9z5Po34J7a+xqWxtV63osW7Gb9aPN0ZPkv4G+EX0fqvnFvH1qG5xjyOfxkSUihS9ySmeeFEquJepMkpFClkkpC4GOJcpE00UqRlSBIa4lyfuSUilSJKQuBjiXcSJJ9ilSJJsXAxxLlIkmUqRJSDAxxLlIzlFSkSUl1DA1xM+rD9hnlyMN4HpAG+iD5LAXLmyLY9IU89fHV4Jrxp8ANZttOs519f20nrmkKmsznUpRfm0kvWXHSdRKK9ZqHY3fgC3tR3r8KmyaquVVudFoVtEuocfE6UrerKNOL7fmfJkl0Ukd7tKSaksp8sM6I+GDZVLwf374t+EljZfRtI/tq23bosYpKmrLUKcoOnBL08utZ1YYfRQfU2FXv2nQKthUfGlONSPk/UkvjKL+Jjq9Dcuo149Vuv80/zR6IGcGE+gbwaeyVomnkknkrTJJ5GCYPxZ/KG+D0fCb4kdautNsqlHRt4RW4LJ8L4FUqyauYKXplVlOXD+jGpDpjPmY/XD8qZ4UU94+BNp4jWdvOeo7Gv41ZyhHObK5lGlVTXtU8iWeijLu2vyPPVuwGsf3zoVKpN5nD1JeceXxjhvxNH1W3+z3UkuT4r3/zAANzMaAAAA9c/AjsWMqmveI93TlmGNJs2/Tnw1Kz+f8Aqkn7yPIx+nXgfsxbA8LNvbZqLFxStFXusrD8+q3UqL7pScV7RRpu2999l030EXxqPHuXF/Re86V2XaT9v1l3U16tFZ/xPhH6v3HP0+hJMrT6Ekzis4no5ouTyWRkUJ45lifUrSiRtFyfQmmVRlkmnkryiQyRamTT6lSZNPqivKJG0Wp9UTT6oqT6k0yvKJG0Wpk0ypMkmQSiRNFyeCaeClMmmV5RI2i5Mkn0ZUngmmQSiRtFqfRk1LBSn0ZNPoyvKJG0XJ9SaZTGWCafYglEY0XxkWxln5msn1ROMiGUSGUTbjItjLJqxln5lsZEEo4IJRNqM8cmXRn3NSMiyM8cmM5EMo5NyMiyMjVhPo2WxkKV5RNlSLIzNeMixSFIJRNhS6o+Turaejby0x6dq1HLjl0a0ft0Zd4v+K9GfRjLBbGRf03UrvSLunfWFR06tN5jKLw0/B/1lcGQzgmsM8wbw2FrWyr10r+n5tpOWKF1BPgqLon+rLC+z/Fcz4MUj1zeWdlqdpUsdQtqdxQqx4Z06kcpo6d3p4K3Vk6mo7S4rm35ylZyeasP8D/TXt68up7u7K/7R2na/GGlbVyjQueCVXlSqfxdKcn4+o3yceETFXFrKHrU+KOrIrBZFGZ0qlGpKlVhKE4ScZRksOLXqmu5JRPU0WpJSjxTKKmFHJJIykSw+w7A9TMYJcOTKRnAYJFMxhDHYkMCYJYzI4Qx7ksGPTshGiaMiOF0YwzIG4JVIi0uqMOPtlE8GMMGiRTK2vvRFxLfXoRce3NdhB6mVPszkGk+HG+9ftaV9o209Tu7av8A6utTt5eXLnjlL09fc+FKJ97aO/d2bEvPpm2tXrW3E81KL+tRq/4oPk/n6ro0YbXv74VlKWh+j9OuSq724/BuLyvPD7sdUyq5uP7PGfE+3T8APF6vHihs2sk/17qhF/g5oT+HnxhisvZs2va+tn/8w768OPiP21ux0tL3PGnomqSfDGUp/wCjVn04Zv7DfaX4tvB2+32PH21Hb72k7H3zsNZ063pT6ZhVaku+MlW3ZLxXvwzAVtTu7eW7Ugl8f1PCV94LeKljLhr7G1OT/wCppqqvxg2jjesbR3ToNPzdb23qdhTzjjubSpTjntmSSP0QciLw1hrJTsv7V+tU5L7bp9Ka67kpwz5Z38fMbHWqn3oI/NeayUTjyP0O1zw+2NuSnOnre09LunNNOpK2iqiz64mkpL5pnWW5vhP8PdWzV0G8v9Eq45RhPz6XzcZ/W/CaOkaH/aj2Yv2oapb1bdvrwqQXm44l8IMtU9Woy9tNfM8bTifS2luzWNka/bbi0StwXFu/rRf2KtN/apyXWLX4cmuaTO0N4/C74k7d8y40mhb69axbxKzlitw9G6UuefaLkdP39jeadd1bHULStbXNCThVo1oOE4SXqpRfNP5nbdM2h2b27salOwr07mlOLU4pp+q+DU4P1llPlJIyEKtOuvUeT3LsneWk7727bbi0ep+brLgq0m/rUKqxxU5e6z69U0+pyBSPFvg54m1/Djcqd3OUtG1CUad9TXPgWeVWK9eKOXyXqsrtj2VRr0q9KnXt6salKrFTpzg8xnFrKafVNPJ4B7WOzit2e606NJN2tXMqUn3dYN/ihlLxTUurSqVKW48G0pElLsyhSJKRy3BC4l6kSUl6lKl7klIN0Y4lykSUilSXQkpC7oxxLlIkpe5SpElJBgY4lykySkUqT7klMXAxxLVImplCkiSkGBjiXqSM+ry2UqSJqQqQ1xJt5MeoHoOSEMN4NShoenz3DT3IqEY31KyqWTqLk50pVIT4Zd8SjlZ9OKWMcTztMssnm5jF+kk1+4JNxi2n0EqL1GbaeQY5xbT9VyZkxzKvNEk+hJPBWSQ1jT4++Np6bv3Zmu7I1dtWOv6bc6bcOKTcadanKDazyylLK90fz37q25qWztz6xtHWYRhf6Jf3GnXUY5wq1GpKnNLOHjii+h/RUn0Px2/KbeGktj/EpdbmtbGNDTt6WFDVKcqcOGDuILya6/x8VONSXd1U/Vs652Q6r6C/radN8Kkd5fxR/VNv3GA1+hv0o1l0fyf8zyUAD0GamAAAHPvAfZ/9+fFnbmhVbeNa1V3G6u4TWYOhR/OTUvaSjw/OSR+mSfU8a/ArtOnca5uLe9fizY29PTbdY+q3VfHUl80qcF8ps9kJnIduLv7RqCoLlTSXvfF/LB6T7K9M+x6J9qkvWrSb90fVXzTfvLovJNMpi8FifU0eUTpDRamTi8FSZJMrziRtFyeCxMojLuWReCvKJG0Xp9UST6lSfUmn1RXlEiki1PqTTKkyaZXlEiaLUyaZSmTTIJRI2i5Mmn0ZSmTT6MryiRtFqfRk08FSfQtp06tTlClOXyi2QSiRy4cyaZJPoy2Gl6nJZWn3DXfy2WLSNV//ALfcf7jK0nHvIJVKf4l8SlPuTjLBY9M1OCzLT7jH/o2VOnVp8qlKcfnFohkk+QzejLkyxMkn2KU8FieSGURGi6My6Ms/M1UyyMyGUSKUcm3GRZGXuasZZ59S2MiCUcEEom1GRbGZqxmWRkM5EEom3GXYtjLJqRm0Wwn2AglE2YyyWRnj1NdSyTjIUhcTajInGTRrRk1zRbGaYqeSGUT4G6/D7b27oOrd2/0e9xiN1RSU/wDMvSS+f3NHTG6fDrcO1JSrXFv9Jsl6XVFNxSzy4l6xfz5e7PRUZE/qyi4yScXyaaymdo7Oe3PaXs+cbVS+0Wi/7U2+C/8ArlxcPLjHru5KNe0hW48meTkjKR3runwi0LWuO70ZrTLt5eILNGb94/o/OP4M6m3Ds7X9r1nDVrCUaXFwwrw+tSn8pfyeH7HunYLtk2W7QIxpWVb0Vw+dGpiM8/u8cTX8LbxzSMTWt6lDi1ld58VewwZSM49jquCKMzAwZ/cMPsITRmYAAmCZVDGDDTJATBLGoQMmcJmGmJglUzGCLRMw13QmB6kVuOeRFrqWtEWhMD1MocfwO1fCzx93BsaVLSNelW1XROUVCUs1rZf9XJ+q/Zbxy5NHV0kVyXqa9tNsrpG19hLTdZoqrTffzi/xRlzjJd6fg+DaG1YU68dyoso/QDb25NE3XpVLWtv6hSvLSsuU4PnF9YyT5xkuqfM+i2eEtg+Iu4vDnV1qeiV+KjUaVzaVG/KuI9mujXSS5r5ZT9i7C8Qdv+Ieix1fQ6+JRxG4tptebbz/AFZL+D9H+J88+1jsa1Hs4r/a6Ddaxk8RqY4xb5RqY4J90l6svB+qtbvLCVs96PGP9czk+RnoQ4jHEcWKWCeUce3dsHZu+rX6LunQLW+SX1ako8NWn/hqRxKP3M+9xMxllqyvrrTa8bqyqSp1I8pRbjJeTWGh0W4PMXxPJviV8JGs6VCpqnh5fS1W3inKVhcuMbmK/YlyjU68nwvly4mb/wAO2/L2m7jws3TCvb6lpnHKxhcRcZ8EedShJPmpR5ySx9ni/VR6iz7nFt4eHO294XFrqt1Q+i6xp841bLU7dKNehKLTSz6Tjyw4yTWG/R8ztD7YrjarQ57ObZR9NHnTrpJVKc17MpJcJx+7LGJ7rl7UsGTpahJrcrcfEpUvckpFl9Y17KadRKUZY+vFYWf5GspPucljiayi7Hdmt6JsKRJTKFLJJSHbojiXqRJS9yhSwSUg3RjiXqRJSKFImpC7oxxLU/cmpFCkST9w3RriXqSJKXZlPEZUhcDHEvUu5NSXQoUvckpCqJG4l6kyWclKl7klIN0Y0Sb6Flo+G5pv9pIqJ0OVem/21/ESUcxaGyWUz6NxHhqv3WSCfQvvI/VjPs8GuYqLykUYvKJGURT7klyBoXBI8RflXfDmjuHwT0TxGoUJO92lq8aNSazhWd2uCef/AFsLfDfd9z24mjgHxAeHsfFXwU3p4f8A0Snc19Y0e4pWlOpjH0uMeO3lz9GqsabT6NJmY2a1H+6NXt7zOFGSz/C+Evk2V7uh9ooTp96+fT5n4BANNNprDXqgexjnYAJUaNW4rQoUKcp1KklCEYrLlJvCSAVJt4R+gPwkbbjt7wW0y5lQlSr6zXr6jV4lhy4pcEH8nTpwa+eep3Qng+PtfSKe3dtaTt+ko8Gm2NCzjw+mKdNR/kfWT6HAtSru8u6lf8Um/dnh8j2ho9gtM06hZr7kIr3pcX73xLU+hOMsFSfQmmYyUS80XpkkymMu5YmQSiRtFqZOMujKk+hJMrTiRtF0XgsT6ooi8lkZEEokTRcmTTKkz6GnaRfai80KWKeedSXKK/r9xUrShSjvTeEQVJRprek8I10zZtbO7u5cNtbzqfJcl95yXT9sWNtidy3cT/a5RX3H26cIU4qFOCjFckksJGBuNXprhSWfHoYa41WEeFJZOM2m0ryolK6rwpJ/or60l/I+xa7W0ujzqxqVn+3LC/dg+mvQsizFVL6vU5vHkYitf3FTnLHlwK6GnWFvh0bOjBrqoLP4m5HC5JYK4k4vkVnJyeWzHzlKTzJ5LI+pYvQqLIiETJL1LFhrDWSsnFjiNlVXTtPuM+fZ0Zv1y4LP4mlcbU0qt9alGpQf7Esr9+T6i9SyI9Skuo6NxVp+xJo4pc7QvaacrWvCsl6Rf1ZP+X7z5FzZ3dlLgurepTfRyXJ/f1OxYkpwhVg4VIRnGSw1JZTHKo3zLdPVqsOFRZ+TOtYzLYyz8zll9tOwuk52jdtPsucX93T7jj19ompac261Bypp8qkOcX/T7xeEuRkqN7QuOEXh9zKYzLYz7mpGWfmWxkRSiTSibcZFkJmrGfcsUiLGCCUTcjIsjI1ITLoz7gQSgbEZFkZdUa8ZJlkZYDJDKJsxnnkWRkaqkWxn0Y7JC4mypJ+gq0qFzSlb3NGFWlNcMoTipRkuzT9SqMiakOjOVOSnF4a5NEUonA9zeDmj6lxXOgVf7Orv/ZPMqMn8vWP3cvY6r1/aWvbarOnqunzpwb4YVo/Wpz+Uly+54fselIzFajRuaU6FxShVp1E4zhOKlGS7NP1PQmwf9o7anZPdtdTf2y3XDE3+0S/dqcW/Kal3LBQrWNOpxjwZ5TwYwjvDcvg9oup8VxoVT+zrh8/Lw5UZfd6x+7l7HVW4Noa9tmrwarYThTbxCvD61Kfyl/J4fse0Nhe2HZTb9RpafX3K7/7VTEZ/4eLU/wDA34pGMq0atDjJcO8+I0/mY+/8SfD2MfM6hgjjUI47owSx2MfuEwSqZgGcdzAhNGZhoY5GRyEwSqZDGCLXMsZFoTA9TK2Qa5lrRXITA9TKJLofa2ZvTXdh67S13QrlwqQajVpNvy69PPOE11T/ABT5rmj5M48yma5lK/sLbVLWpZXtNTpTTUoyWU0+aaH5U1uvke7Nh780XxC0Clruj1OFv6lxbyeZ29THOEv4p9Ucj4keFvDnxB1bw43FS1jT26ltUxTvLXP1a9LPNe0l6xfR+2U/aug6/pe5tItdd0a5jcWd5TVSnNfvTXRp5TXRpnzc7ZOyiv2camqtrmVjWb9HJ8XF83Tk+9fdf3o8ealjAXdp6CWY+yz6fEYciDYycXKmCTl7jiIZQ4gFwZqRhVg6dSKlGSw0zjupabOzl5lPMqLfr1j7M5DxEZqE4uE0pRksNPqTUazoyz0J6FaVCWVyOJqTJKZfqenysqnHDLpSfJ9vY01L3MzBxqR3o8jMxcakd6JsKXZklPua6kSUvcfuiOJepElJ9ChSaJqQu6McS9TMqRSpPuSUg3RjiXKTJqWShSJKTQbo1xL1L3JqRrqRJSF3SNxNhSJqRrqRJS7MN0Y4mwpFlF5rU/8AEv4mspl9q83FJftx/iMksRZFJYTPu148VKS9smlE32/Y+c1wycX6p4MLS48DGU+4mMsipdzJI4kmCaM5ZFMzlMbgXB+C3xQ7CuPDP4g9+7OrU4wp22t3FxaqLyvotw/PodPXyqsM++Tq49p/lWNkf2D4+6TvGhTxR3RoVKVSXE23c285Up8ui8vyPvyeLD2Bszff3lo9tdN5coLPmlh/NM53f0vQXM4eP80DnHgdolTcPi7tPTYQ4/8AnOlcTX7FF+bL/swZwc73+DPSHf8Ai7PUXTbjpel3FdSxyjKThTS+bU5fgy9qtb7PY1ai6Rfxxw+Zktl7P7frVrbvk6kc+SeX8kz3ZGRNPoUp9SyLycMnE9lSRan0JplSZNMryiRtFqZZGRSn1Jp9UQSiRNFyfQmn0KYyyWJ9GQSiRtFif4lkXkpTJJlaUSNo+voH0Oeo06V9BSjPlHifLi6Z79jntJKK4YpJJckjq+E2mpRk1JPKaOf6HqkdSs41W15tP6tVe/f7zVNftp+rXXLk/Dx95gNYoS4VVy5H1osmitPmWRfQ1o16SLIsnEqiywUiaLovqTj6lUWWJ9RSFotXoTiyqLJr1AjZaZiyK9DIpHJFq5k4sriySfMUjZaTiytehKLFI2i1PmWJlROLAiaNK829pN9mU7dU5t546X1X/Q+LdbMu6eZWVzCql6Rl9WX9P4HKovoTix2WT0r6vQ4Rlw7nxOvbjTNRs3/pNnVgl14cx/FcimM8cjs2LKK+laZdtyuLGjNy9ZcOG/vXMRpMuQ1npUh8P6+p19GRZGRzCps/R6mXTdel2UZ5S/FM1ZbHfFmjqXLtKl/xGOBOtUtZc3jzX6ZOPRn1LYy9z68tl6lH7Fzby+bkv5EVtLWY+kKUl7VBu7JA7y2lymj5ykTjI+hHaut/9BD/ANpEthtPWX606S+dRCqL7iOV1b/jXxPnRkWqR9als7U5JOdxbx/zNv8AgblHZU8p1NRil1Uaef5iqMitO+to85/mfAjIsUjldDaGlwS8ypXqPrmSS/cj6lvo2lW6XlWNLK6yXE/xY5QKFTVaMfZTZwq1sry8aVta1Kmeqjy/H0PrUtlV7+jKjqfkRoVU4zpziqnFF+qa9DlsXjl0OrvHLxPhtPSJ7b0i4/541CniUoPnbUXycv8AE1lLqvXos7RsfstqW1+s0NI0pN1ZyXHpBLi5trkori3z6LLaRja2q1Z8IJL5/wBfA8879oaFa7x1W120v+bqFw6VHEuJNxSUmn+q5KTXtg+AS/eYwfW/S7F6bY0bJ1HN04RjvSeZS3UlvSb4tvGW+rKKqNvJFx7GGmiZgvYJo1CGOxh+5NxMNYG4J41CL9zBLHYxj7hME0ZmGun3GGS9SLX8BCRTIP0INFkkQaEwSKZVJFVRMvkiqaGtEsZGvJHbXw+eKctoa4tr6zctaPqtRRhKb5W1w+Sl7Rlyi/ufLDOp5rBRNGs7XbLWG2ej1tG1GOadRYz1jL7so+MXxXfyfBtDpxjVi4S5M/RDPuY4jqrwA8R5b12r/ZepXDnq2jKNGs5P61al/s6merwsP3Wep2jk+VO0+zt7snq9fRtQWKlKTT7muakvCSxJeDMFOk6cnFk+L3HF7kMjKMCNwT4vcxxcyOV3MZXcAwZqwp16cqVWKlGSw0zjF9azsa7pyy4vnCXdHJuJGvfWkL2g6UsKXrF9mW7S49BPD5P+slq2rehlh8mcaUkTUymcZ0qkqVRYlF4aCkbAo54ozGEzYU89SSkzXUiamLujHE2FMkpdjXUiakJujHEvUySkUKXuSjLsKojHEvUmiaka6kTU2g3SNxL1Jk1I11MmpMN0Y4l6kbVh9a6pr3yaKkvU3tJTleRa/RTb/h/MirrdpyfgyvWWIM++maVwuGs/fmbeTVu1icZdGsf/AF+JgKPtYMTBcSAIpksosYJTKZIgngllCYA8Ifla9j09S8Ltm+IVN1HcaFrVTTJRWOF0bui5uUuvKdrTS/xs/Lc/a38oHtB7x+FHelOhShO50eFtrFFyeOFUK8JVX8/JdVfefikekOyy7+0aF6Fv/wBucl7niX5tml6/S3Lre70v0/QHrP4GNNUbXdusyprM6lpawnj04VUlJL/ej+48mHuT4NtLjp/hHO+cVxalqlxXz1xFQppfjTf4mzbVVNzTZR/E0vnn6G1dldr9o2kpz/BGcvlu/wDI75TJp45lSZNPByeUT1M0XJ5JplKeCxMrTiQyRan1RNPqipPqiSfUglEjaLk+pZGWShPqiafUglEjaL0+jJJlSeSaZDKJG0Wpn0NI1Sppl3GvHMoPlUj+tH+p8xMmmVK1GNWLhNZTIalONSLhJcGdpW1xSuqELihNThNZTRfFnANv6/PS6vlV25W039Zeri+6/mjnlGrTrU41aU1OElmMk8po0HULCdjUw+MXyf8AXU069s5Wk8Pl0Zcnhli9CpPKLIsx5j5Isiy2L6FK9SyLFRFJFsWTRUn1LIvoKRMtiyRXFk08iojaJxZMqTwyyLFRGyyLJp4ZVFlieUBG0WxfQkmVRZYKRtFqfUmn1RVFk4voKiJotiyyMu5TF9CyLFIpIvi8ehYn1RRGXQsiwIZIvi8k4yxyKYvqixPIqIWi5PBYmURkWRYpE0XJk0ylMnFgRtF6ZOLwURZwbxL8V9K2JaSs7aVO71mrD8zb5zGln0nUx6LsvV+y5rN7O7O6ntVqNPStIpOpWm+CXRdW3yUVzcnhJEM2orMuRueKHibp3h9pTUOCvq11B/RLbOcdPMn2iv3tYXVrydqmp3+tahcarqdzO4urqbqVakvWTf8ABe3RFus6xqWv6lX1fVrudxdXMuOpUl/BLol6JLkkaWO6Ppf2Sdk1h2Zabu5VS8qJelqY9+5DPFQXxk/WfRRx8q+++HIiYx95LH3mDreB0ahjHYxj7iQEwTRqETBLHYxga0TxmRcexhruTMNDSxGoV47GCbXMixMEsZ5IP+RCXrgsZBiEqmVyXJlU84LZehXIa0TRmUyXI16iNmSya8/UZgmjI5F4bb1uNg7ysdwU23bqXk3cOf17eTSmsL1a5SXvFHuC3uaNzQp3NvVjUpVYqpCcXlSi1lNPqmj89p9T1d8N29Jbh2VLQbyvKpeaFNUcyeW7eWXT/DEo/KKPIv8Aak2IV1Y0NrLWPr0sU6vjCT9ST/hk93x313EF3DeSmjt7iHEQ4g5HiAo4J8TMZfchxDiAME8scTIcQ4vcAwfL12zzFXtOPOPKp7roz4yn3OWS4ZwcJpOMk017HE72hKzuZ0HnCeYvuuhntMr+kj6KXNcvIytlU34+jfQkpL1yZUmUKRNTMrulxxL1Mkpe5QpE1JMN0Y4l6mSUuzKE2SUhVEY4l6myal7mupE4yDdI3EvUsE1Pl6mupE4yyJukbibCl1R9XQ1mrVn2il+L/wCB8WMj72ixcbWU2vty/FL/AOmUtQe5QfiUrvhTZ9RMovfsRl2eC1MqvcO3bfRpmv0vbRior1ka0ZEzXjLuXRkX2idommySIJ5JJjWhqOIeMW2LjevhLvTaFnGErnWdA1CxoKf2fNqW84wz7cTR/P0f0aZR/PZ4i6N/dzxB3Pt7yFR/svWb2y8tekPLrzhw/dw4O19kFxwurZ/uSX+pP6Gr7Sw4U5+a/L+Zx4/Q34b9Iq6L4K7Xta6XHXtp3nLrGtVnUj/2ZxPzyP028PrT+z9h7bsODg+jaRZ0nHtw0Yr+Rve2M/8ApacO+Wfgn+pv3Ytaqeo3Nz1jBR/zSz/xORp9CafQqTySTyc4lE9DtFqfQnF4Kk+hJPoyGUSNovT6omn1KIywWJ9StOJFJYLk+qJJlSfVE0+qIJRI2i1MsTyUJk0yGUSNovTJJlUZZJp9GQyiRtFiZ9jQtwV9JqKEs1LeT+tTzzXvH3/ifFTJJlK4t4V4OnUWUyvWowrRcJrKO1LC/tdQoqvaVVOD9e8X2a6M2os6ssdQu9PrKvaVpU5r1x6NdmvRnMNK3jZ3WKWoJW1X0UvWD+/9H7+XuaffaLVt250fWj81+vu+Bq95pVSh61P1o/M5OuZOLKac4zipwkpRkspp5TRZF9DCcmYWSLk+hOLKk+pYmKRNFi7lkWVRfQnFgRssJRZBc0ZTwxxHJFpOLK4skmBGy1PBOLK08kosUjaLE8FiZUnknFhyI2i1PJNPqVpkk8CkTRcmWRZRF9D5Wpby2rotSVHVdxafbVYc5U6lxFTX+XOf3FuzsLrUavobOlKpPujFyfwSbIp4iss+/F4LYyOtr3x48O7ObhRv7q8a5ZoW0sfjPhyfEv8A4ktCpNrStuX1z716sKP8OM6DpvY5t7qm79n0qqs8t+Po/nUcce8x9S9toc5r45/I7nTLEzoKfxK38n+Y2nbw/wAd3KX8Io15/EfuZv8AM6DpkV2k6kv4SRtlH+zd2i1fas4x86tL6TZUlqdp0l8n+h6JizM61OjTlWrVIwpwTlKcnhRS9W30R5yfxG7za+ppOjR93Sqv/wCYcR3P4i7v3evK1jVZu3TbVvRXl0vvivtffk2XQ/7K+2F9dRhqlSlb0ust7flj92MeDfnKK8ehBU1Sgl6uWdueInjza2EamkbJqQuLnnGd80pUqf8AgT5Tfrz9PmdC3V1c3txUu7y4qV69aTlUqVJOUpS6tt+pVgyvQ9pbAdmmg9nFj9l0in68sb9SXGc34vol0isRXdltvE1budd5ly7jAM4QaN+wNjUI4GPvM4AjRNGoRx2MEhj7xuCaNQiYx95LBga0TxmYx95jHYkYx3Q1osRqEWiMkTIsbgmjUKnkiyyX/Erl3EJ4zK5enoVSRbIqmNZNGZVJFFTv2L5lM+Yxk8ZmtM594D7s/ut4i2Ma9SUbXVc6fWSfLM2vLbXtNR59E2cCn7FUatShVhWo1JQqU5KUJxeHFp8mmYDabQ6G0uj3OkXPsVoSg/DK4Pzi8NeKJ8qSwz9CcoZPhbN3BT3RtXStwUqsJ/TbWnUqOHoqmMTj90lJfcfYz7nyMvbSrp9zUtLhYnTk4yXc4vDXxRRcccC3K9RkqyxkrBulmTOUVZGQDdLco+Vr9vx0I3UEuKlyl/hf/E+jlkakI1acqU1mM04v5Mmt6zoVVUXQkpSdKamjiKmTUymtCVvWnQm+cJOLCkbokmso2DdTWUbCmTUzWUyakLuDHA2YzJKRrqXZk1MXcI3EvUiSkUqWCakG6RyWC5SyWRkjXUiamJukMomwpHKbGDo2tKm/VR5r3fM4vZU/PuadHpKSz8upytPsYPWJ43afvMZfPlEtT7Fd027ea9jKlzMVn+aqY6xf8DCweJIxyWGfPjIsjLqjWjLJapGWcS04mxGRYnk1lItjIY4kbiWH4X/GHtuG1Pif8StKhNyjV1+41BZ6fSsXOPu87H3H7n8SPxh/KKWkLX4t94yhHHn0tOrP3bsqKz+46j2T1JQ1atS6Om38JR/VmvbRwX2WMu6S/JnnKxtZXt7b2UPtXFWFJfOTS/mfqLp1JW9hbUI+lOjCC+6KR+ZmzqXn7u0Sj+vqFuv+8ifprQeKUF+yjp+2C/Y0fOX5L9Tp/YnQStryt1coL4KT+psJ9SSeStPqST6o5/KJ25otTySTyVJk08kMokbRYn0JxlgqTyTT6MglEY0XJ9UTT6oojLBYn1RXlEilEuT6okn1RUn1RNPqiCUSNotT6osjLJQn2Jp9UQyiRtFyfcmn3KYyJpkMokbRamTjLoypMkmQSgMaPoWGr6jprzZ3U4J+sfWP4Pkcksd9vPDqFl0+3RfX/C/6nDYyJp9jHXNhQueNSOX39fiUbiwoXHGcePf1Oy7TdOh3MeL6dGi+qrLg4fvfL959a3r0bmmqtvWhVg/SUJKSf3o6hUicXwvK5PuYiroNJ+xJr5/oYiroNN+xNrz4/odwxZNdzqKndXNP7FxUj/hm0dibRdWWh0KlWpKcpucsyk28cTXX5GLvdN+x09/fzxxyx9TE32mOzp+kcs8ccj7sWSKovoWJ5MYjENEossKvQnFikbRbFkipPBZF9BRjRZFk1yOA788Ydo7CU7S5ufp2ppcrG3knOLayuN+kF6evPnlJnn7eXjVvXebnbyvXpthLl9Es5OKkv25fal8vT2Ox7A9h+1G3ajdQh9ntX/3aiayv3I+1PwfCL/EYq81KhacG8y7kekdz+LmxdpSqUL/WIXF3TlwytbRebVUuqeOUX/iaOrNwfEtrd3x0NtaNQsabeI17iXm1cd1HlGL9nxHRsJZ5s2ab9OZ672S/s37G7PRjUv4Su6q61HiGfCnHCx4Tc/M1m51u4qcIeqvn8f8Awcr1jf28txT4tX3Fe1YtY8uNTy6f+5HEf3Hx4vnls1qckXwZ3bTdMsdIoq30+jClBfdhFRXwikjB1bidR5m234mzBl0Ga8GXRZkkyu6hdH19S2JVHOC2L5YHKRG6pbEmitE0xyYelJozgiiSa6D1IeqpnAcQZQ5MmjVImGibSZhx7Ck8ahDAJGMCNE8ahEP3MmBuCxGoRwGZ+RhjGieNQiyLJMixuCxGZB/xK5rmWP8AcVzGE8JlcsZKpFkvcrkxGizGRVMon6F0yibI2TwkUTZRNl837GvU/gRyLMZHqP4YtfV/sW50WcvzmlXkkl/1dRcaf+95n4HcPEeYfhZ1qdruvVtDljy76yVdNv8ATpTSSXzVSX4HpriPmN286KtE29voxWI1XGqvHfinJ/594JR45LOJjiZXxjjOPjd0s4hxFfGZ4hA3SziHEV8Q4hQ3Tj+4qXlXca8Vyqx5/Nf8MHzI1F1Pv7ipKpYeavWlJS+58v5o4yp+5umkT9PaxzzXD4fyM9Zv0lFeHA21P3JqZqRm11LIzz6mS3CZwNqM/cmp+5rRmWRnzE3CGUTZjP3JqRrRn7lily9Q3CGSNhSJp9jXjLkWKTE3CGSPt7fpcVadw48oLhWe7/4fxPvJnz9KofR7KCaxKf15ff8A8MG4pGlajW9PcykuS4fAwVxLfqNl3EhOWacvkyCkJP6kvkynF8UV8HyoyLIzNaEiyMuZsDiXHE2lLsWRka0ZFikMcSNxNlS5H5JflS9Po2XxL2tzSpqMr/a9jcVGl9qSrXFPL+6ml9x+tEZH5Z/lYdPVPxv2pqqf/lO1adBr/wBHd3D/APmG/dmktzXorvjJfk/oYHaCH/RSfivzPIXh+uLfOgL/APyVv/7xH6UWk+O2ozzylCL/AHH5r+Hzxvrb/wD+pW//ALxH6O6JXjX0iyqxeeKhD8eFJ/vOxbW03K1pT7pNfFL9DqfYpFPSrl//AGL/AGo+pGRNMoTwWRkc+lE7I0Wp9UST6orTwST6ohlEY0Wp5JJ5Kk+qJp5IZRI2i1PoyUZYKk8kk+5BKIxovT7E0+qKIywWJkEoYIpRLU+qJp9UUp9SaZBKJG0Wp9iyMihMmmQyiRtF6ZJMpjImn2IZRGNFqf4Ek8FafYkn2IJQGNFqZOMilPsSUskMokbRen2Ozdq8tBs0v1W/+0zq5Swdn7WlxaBZy/Ya/wC0zX9eji3j/F9GYDX1+wj5/Rn2kycWVRZNPBqhqLLTKfQjF9DW1PU7DRrCvqmqXdO2tLWDqVatR4jCK6ktKnOvONOknKUnhJcW2+SS6tkcuWWbN1eWtha1b2+uaVvb0IOpVq1ZKMIRXNtt8kjzp4ofEXd6hOtoOwa07a1TcKmpL6tWr38vPOEf2vtdsdeE+LfjRqXiJeS03TZVbTQaE/zVD0lcNelSp/KPovmdeU2e5OyH+z7a6TTp61tZTVS4eHGi+MKfc5rlKfh7MfF8tU1LV3LNK3eF39/kb3m1Ks3Vq1JTnJ5lKTy231bNinI06UuZswZ6vjhLCNWqTNymzapPoaVORtUnz9SRMpzkblN88GxB9DUhLubEJEikVZTNmLL4M1oMug8kikQSmbUGWRfcogy2Lz6DkyF1C5PBNPqVRZYnzwOUhPSFia7kkVpkl7j0xyqk0ZyRM57jkyWNUkmMkTOR6ZYhVM8mYawMj16scnktwq5IswzL7GGGCzCZF+noYZlkWNaLEZmGRZJsg+Q1osQmQfZEJcyTZB8kRsswkVzfQqkycvXmVSY1lqMiuT6FE3j1LZMpmRsswkUT9cFFRl1R8zXqPoRstQZzvwH1L+zvFTR3KajC5863lnrxUpcK/wB5RPYnEeGfD+4VtvzbtZvCjqltn/2kUe4eI8Ef2rbGNLaWzvF9+huv/BOTz8JY9yLKWUW8Q4kVcSHEjy2LulvEhxFXEvUcSATdLeJGeIq4vccXuAbpi9pqtaVqLWeODS+eORwhTOb8Rwe6iqN1VoxXKE5RXyTNr2bllVKfk/6+RltM+9EtUycZ5NaMicZG0bhkJRNuM8FkZ5NSMu5Yp8xrgQSibcZE1Pka0amSyMuWRNwryibMZm5ptD6Vd06TTcc8Uvkj50ZI5Ht63cKErqaxKq8R/wAK/wCP8ChqVf7JbymufJef9cSncy9HBvqfbUsEk+pUmSUjQsGCaLVIzN/m5fJlaYnLFOXyY6K4oZjifGjLBbGRqxkWwkbM4F9xNpSLVLl6mspk1IY4kcom0pH5k/lZ4/8A9R9iVOr0O4j+Ff8A4n6YRmfmh+VlefEHYX/6Nc/+/RunZ4sbQUvKX+1mC2gX/wDHz935o8XbBfDvjQH21K3/APeI/QnY1wq2gwp550ak4fv4v/iPzv2dUdLd2iVF+jqFu/8AvInvvw8uVi8tHLn9SrFfim/4Hfdeoen0io/wyi/p9Tp3Ye1LS7yPdOL+MTm6fRk08FSeSSfRnLJROzNF8ZE08FClgsjIglEiaLU+qJJ9UVp4JJ9UQyiMaLU8kkypMmnkhlEjaLE+jJp4Kk+5JPBDKIxouTJp5KE8FilkglAjcS5MkmVJ9ySfcglEjaLU+5NSwUp9yaeCGUSNovTySTKEyxSyRSiMaLU+5JMqT7kkyGUBjRapdGdmbNqqe37ZL9Bzi/8Aeb/mdYJnYewayno06eVmnXksezSf9TXtfp/9Lnua+qMHrsM2ue5r6nKU+hYnkpTyTizTDS2iziUU5SkkkstvojyL49eMVTfOry25oNzJaDp9Rrii+V3WT51H+yvSK+/qsdl/Ex4mS27oUdl6RX4dQ1im3cyi1mla+jXzm8r5KXseUoPDPZv9nDsvpxpLbLVYZk8qhF9EuDq4728qHck5dYtavrd/h/Zqb8/0/U36UufM2qcjRpSNqmz2ImajUkbtN8/U2oS9DRpyNqm+g9MpVJG7B+5s0pcvc0YSZs05YeSRMqTmb1ORsU5e5pwl7mxCXuPTKc5m3Bl9NmrGWS+Eh6kVpTNqL7stjI1oSLoyHqRC5mxFonFplEZFikOTG75cnz5smmUxZNMcmKqhZkkn7lafYkmmPUiSNQn8hkhl9TOR6ZYjUJZBHIyxyZahUMtkWZb7kW18x6kXKdQMg+TMt9yLfYXmXITMMi/QN+5Fv8BpZjIjLuVyZKTwVvkRstQkQny6lM2WTZRN4GstQkQmymbLJMomyORagyqozWqP1L6jNaciJluDN7bNbyd0aRW/6O/t5/hUiz3ZxI8GaHxS1/TYx9XeUUv99Hu3iZ4g/taxSv8AS5ddyr/uh+pkKCzEu4jPEU8Q4jyETbpdn3HF7lPGOMVcRN0u4sdTHGVObMOZLGAu4Wua7nD9XXl6pcR9cyUvxSf8zlTl7nFNf+rqc2v0oxb/AAx/I2bZxYuZR74/VF/T1io14GupdmWRly9TVjMsjI3PcMpJGzGWepZGZrKRNS5ibhBKJtKRZGb7mrGRZGfIbuEMon0LKjO8uIW8HhyfN9l1ZzSnGNOEadNYjFJJex8Lbdm6VB3lRfXq8of4f+J9tSNH127Vev6KPsx/Pr+hgr2e/PdXJFynj1JZKVIkpdjB4KLRcn7ka82qFVrpCT/cRTKr2pwWlV944/HkSUo71SK8UIo5kj5MZdi2MjVjItjI2lwL7ibUZFkZZNaMicZDHEjcTajL3PzO/KwVVLxK2PRzzjodeWPncP8AofpZGfc/Lr8qlfOt467a0/8ARt9qUav3zu7pP90Ebr2eU867B90Zflj6mvbSerp8/Nfmjxzpl39A1K0v8Z+jV6dbH+GSf8j3lsy6Vtr1GLlhV4SpZ+7K/ekeBD2ztzUpys9L1dLMpUqNxjPq3FSPR0KH2u0rW/4lj5M37sGrbyv7Z/8A1tf60/od1p5Jp5KadSNSEakHmMkmn7E08nGpRw8M7s0Wp9GTTwVJ5JJ9yvKIxovjImma6eCyMiCUSJouT7Ek8lSfVE0+qIZRGNFifckn3K08kk+5FKIxotTwST6oqTwST7EMojGi6Msk0yhPsTjIglAjcS5PBNMpTJp9iCUSNotT7EkypMkmROJG0XRkTTKU+5JSwQuIxovT7HMfDu4SrXls5c5RhNL5Np/xRwpSPubPvFa69b8c+GNbNJ++VyX44MZqtB1rOpFd2fhx+hjtTo+ltZxXdn4cTtJPqQvL2206zr6jeVVTt7alKtVm/SMIptv8EIs494lUJXXh5uWhCUk5aVdYaeOapyf8jRtJtad/f0LWq8RnOMW+5Skk37kzntVuEHJdEeLN87rvN7br1Hct63xXlZunF/7OkuVOHLtFJe7yz4SyMdkMd2fXOxsrfTbWnZWsVGnTioxS5KMVhL3JHLqlV1JOcnxZfSlzNunL3NCnLDwmbVOWC2mVKjN+m/Q2acvxNGnL3NqnLqPTKNRm7CRsU5Y5GlCXQ2Kcsj0ylNm9TkbFORpQl1NiEvQcpFSbNyEjYhI04Sz1NinPoSJlScjbjItizVjItjLoPUiByNqMvctjL3NaMvYsUmPTGORsKXYmpI11IsUhykCmXJkslKkSUl1HJkkZlqfZmeL2K8jI5MnjMs4uY4iHE0OP5D1ItQmSz7GMsjxMN5HplynMN4IuRiXuyLkPUi9TmGyEpBvPoRb7isvQlkw2VykZlIqlLAwtQZCb5+vqVSfclKRVN+4xlyDISfQpnLqTnIoqy5YImWoMqqSy8mvUlksm8GvORFItwZ9PaMHX3hodH149Sto/97E9x8Z4q8L7Spf+I+3relHMlf06rX7MHxy/dFntDjZ4U/tY3MZa3p9unxjSlL/NPC/2v4GXtFmDLeMyplPGHM8npZLW6XcRjj9yjjDn7k8IC7hc5GOMp4mxxe5YjAXcLXNtnGNxT/5x/wDVx/mci4ji+4pr+0fX/Zx/mbJs5D/q/c/oXLGP7X3Goplin7mqp8yalzN5dMykkbcZ+5OM89TVjMsjIb6MglE2lN9zf0q0lqF1CjzUF9abXSJ8qLcmkk236HNtEsFYWiUv9dU+tU9uy+4xGsXi0+3bXtS4L9fcULup6GHDmz6kHGEVCKwksJLoWKXYoUiSZzhpvizAOOS9SZJSKVIkphgY4lymzX1OeLKfP1wv3lqkaGs1eGhCOPWef3Ms2cN+vBeIU4ZmjQjIsjI14yLE+zNocS+4mzGZapGrGRZGYxxI3E2oyPyc/KXaxT1P4lp2cHl6ToNjZz9m3UrfwrI/V2Mz8evj6v4X3xV7z4P/ADdWFB/ONlRz/E33s3oqWsSl3Qf5xX1NW2se5YJd8kvk39Dz2evPDu/p6lsTQbqlPiSsaVKT/bpx4Jf9qLPIZ6d8CbuNz4c2lGMk3a169GSXRubnj8Jr8T0Lp0sVHHwNj7DLt0tdr2z5TpN++Mo4+TZ6N2teu80S3nKScqa8qX+Xkv3YPsJ9UcJ2FfKNS50+Tf10q0F8uT/l+BzRPscv1+z+yahVglwbyvJ8f5HpmrHdk0WJ5Jp5KkySeTBSiQNFqfckngqT7k0yGURjRdGRNPsUJ4JxkQSiRtFyeSSfcrTySTIZRGNFqeCSZUmSTwQyiRtFqfYkmVJ9iSeSKURjRapYLEyhPuSTwQygMcS9Mkn3KlLJJPuQSgRtFyl3JJlKZNMicRjRan2LqFedCtCtTeJ05Kcfmnk1kySkQyhlYZHKOVhndNpcwu7Wjd0/s1oRmvk1kzfWlLUbC50+us0rqjOjP/DKLT/czjewdSV1pMrGc26lrPCT/UlzX78nKU8HLbmlPT7txi8OLyn80/yOcXlv6CtKk+j+X/g/PW8ta9leV7KuuGpb1JUprtKLw/4FWF8zmvjRoP8Ad3xM12yhl069x9Mpv2rJVGvucmvuOE4b9T61aFqtPW9LttSpP1a1OE1/iipfU43cwdCrKk+ja+DMppPPobFORr8KJ03jkZTJUnLJvU5e5tU5ehoU5G1TmOUilUZvQl7mxCeOppU5GxCfUemUps3YSNiEjShL8C+EhyZTmzdhI2IS5+ppQn0L4THqRVmzehPKLYyNOE+qL4Tz1HqRWlI2YyzyyWxl7mtGRZGQ9SGNmzGZNSNdS9yangepBvGwpEkyhSRJS9x6Y5SL1L3HFzKlIlxruOTJ4SLOL3M8RVxDiQ7JahIm5ByIZMOQ9MuU5EpSZDK7mJSIOQ9MvU5EnLsyDmRciDkPTL9ORmTKpyMyl7lMpZDJfpsxKRVKRmTKpyI5MtwZGcsGvUlknORRUlnKyRMtwZXORr1JE5yNepPCIpFyDOyfh5svpniZb3HDn6DaV7j5Zj5ef+8PVfGzz98L+lw49d12dL6yVK0pzx6LnKaT+6n+477c33PnB/aP1Nant7Wox4qhTp0/l6R/B1GvPJsNlT/Yp95dxGOLn6lPmdDHGcNhAt7hfxmPMKHUHGWYwF3C/jMcZRxjjLEYC7hdxnFNeq8WqVF+oor9yf8AM5I5nD9VrOpqVxJv0nw/hy/kbTszRzcyl3R+qLtlD12/AjGZZGZqxmWRmbv6IvyRtKRZGfoasZn0dIsKmp3KpRyqcedSXZf1IK8oW9N1ajwlzK1RqC3nyPt7Z03zp/2hWj9SDxTT6y7/AHfx+RyhM1qMYUacaVKKjCKwkuiLFI5ZqV7PUa7qy5dF3L+uZrtebrT3mbCkSUihSJqfcx+6V3EuUmTUihS7MkpBgjcS9SPl63WXHRpL1Scn9/p/Bn0FL3PhatWUr6UV+hFR/n/MyWlU964z3J/oSW8M1CMZlsZdjVjItjL3NjcS44mzGRZGRrxlyLIsjcSNxNiEj8SPid1+tub4hvETVa/C3/eK9tYOPo6dCq6MH/uU4n7Zcaist4S5ts/BXdmqR1zdOs63GcprUNQuLpSl6tVKkpZf4nTOzSincXFbujFfFt/Q0jbSe7RpU+9t/BfzPlHffw230qmj61pjkuGhc066XXM4uL/92joQ7T+HfUqltvK6051GqV7ZT+r0c4Si4v7k5/idospbteInZdffYNq7ST5Sbg/8UWl88HprQr7+ztVtrqUuGCnwzf7L5M7QT6o6g6YOy9uah/aGk0K0pJzhHy5/4ly/esP7zAbZ2WVTu4/wv819T2ZXj1Prp9USTyVJkk+xz6USo0Wp5JJ9ytPJJPuRSiMaLE8E0+xUngknghlEY0XRkTTyUJ9icZEEokbRcn3JJ4K1IknghcSNotT7Ek8lSfYknkicRjRan3MplafckngicRjRan2JRkVJ9iSfcilHIxouTJJ9ilSwTUiCUCNxLkySl3KVLuSTIXEY0cg2fqq0zWqTqSao3H5mePf0f3PH3ZO1E8nRyl2Z2ttTWFq+k0qs5Zr0vzdVZy+Jej+9c/xNK2oscbt3FeD+j+nwNV2htOMbiPk/odG/Fbtt073Rt2UaD4a1OVhcVF6KUW500/dp1P8AdOgD214u7Ue8vD/VNKowlO6pU/pVqorLdWn9ZRS/aWY/5jxKe2f7OW061vY+On1JZqWknB9+5L1oPy4uK/gOGbU2ztr30i5TWfeuD+j94CAO+5NZcy6nI2aUjRi8M2Kc+YuSCoz6FOXoXwkaVORsQmKmUJs3qc+WDYhLJo05mxCQ9MpzZuQl7l8J92aUJ8y6E/ccpFWTN6nMvjPsaMJl0KjQ9MryN2E+5aprqakZlkZj1IibNtSJKfc14yZYppj1IMl6kTUzXUiSmSKQ9Mv4uxLjKFL3M8XQepE0WX8ZniKOL3HGOTLUGXORjj5lfFywRc13HplymybmRcityIuXuPTL1N4JuRByIuRByHbxfpslKRVKXuYnLoVSn2F3i/SZmcimUhKXPJTOfYa2XoGKk+WDXnLHUzUkUzkRtlymQlIoqS5ZbJzl3ZdoumV9e1qx0a3yql7cQoJpZ4eJpN49lz+4qXNxStKM7is8Qgm2+5JZb9yLlJOTSR6i8DdGnofhzYOtR8utqEp3s11am/qP74KDOfOoaVnQo2FpQsbaPDSt6UaVOPaMUkl+CLfMXc+S20mrVNo9ZutXq861Sc8dylJtL3LC9xutOj6OCj3GxxmPMNfzTHm5MZCmP9GbLn7mHM1vMMOq+5YjTHejNnjHGa3H7jzGWI0w9GbHmLqzhNa48+4qVly45uX4s5Pe3Co2laq2lwwbWe+OSOHRnzN12WtvVqVfJfr9C9aU8ZZtRmWRn7mpGfQup8dScYU05Sk8JL1b7G2OGOLLEkbtpRrXdeFvQjxTm8JfzOe6ZY0tNto0KfN+s5dZM+doOkR0yh5lVJ3FRfWf6q/VX8z66kcz2h1j7dU9BQf7NfN9/l3fEwN5X9K92PJF8ZE1I11ImpGs7pj3EvUiaka6kTUg3SNxL1ImpFCkSUvcN0Y4l8ZHGa9dVrirVi+Uptr5H3LuuqFrVqv9GLx8+hxiEzO6LR4TqPy/r5Fi1p82bkJl8JdjUjItjIzLiWHE24S9yyMjVjL35lqkRuJE4nHPFrcNbanhXvDc9rOMa+laDf3lFy9PMp0Jyhn/ADJH4Xn68/HVu6e1Phl3V5FVQuNY+jaTSys5VatHzV99KNU/IY692cW+5ZVq7+9LHwX8zmu2tXNzTo90W/i/5A5N4ZapLSN+6JeRaSd3GhLPpw1M03+6TOMmYTnTnGpTk4yi1KMk8NNdUdHhLckpdxq+nXktOvKV5DnTlGS84tP6Ht3qzk2x9Q8q6q6fNrFZccOf6S9V+H8DhmiajHV9G0/VotNXltSr8vT60U/5n0rS5qWV1SuqWOKlNSSfXHQy2qWiv7WdHvXDz5r5n0ChUhc0o1YPKkk15PijteMiafVGrbXFO6oU7ik8xqRUl8mXqRxmdNxbi1xRWaLU8kkytMknkglEjaLEySeCtPuSTwRSiMaLU+xJPJUn1RJPJDKIxotUsFkZFCfcknghlEY4l6fVEk8lMZFieSFxI2ixS7kk8FSfckngilEa0Wp9iSfcqT7Ek+5E4kbRangkn2Kk8Ek+xE4jWi1SJp9ilS7klJohlAY4lyZ97aGuf2PqkVWni2uMU6vZdpfc/wBzZx5SySUindWsLmlKjUXBrBWuKEbim6U+TO84yPGnjZst7L35e0aFKUbHUW721bXJRm3xQX+GWV8sdz1FsbcC1Ky/s65qZubWP1W3znT6P7vT8Dj3jzsP++mzKl3ZW6nqmj8V1b4Tcp08fnKax3STS7xXcu9i+1ktgNsI2t7LFC4/ZzfRZf7OfkpcG+kZSONbW6NUq286WPXp8V49/wAV88HkAAH0VONOYyycJ88MgAGttm5TnyNiEzQpzNmnPsxeRVqRZuwmbNOfoaEJ+hfCePkOyUqkWb8Z+iLoTf3mlCfIuhMdkqTTNyMy6FTHJmnGZbGY5MgZuwqe5dGZoxn7lsKo9MiZuxmWKZqRqZLIzHqQhtxn7klI1ozJcb6j1IejYUiXF1NdVEZU8vGR6kTxNjjMcZTx9g54HqRZgXeYYc+pS5mONdWPUi5TZa5djDkVOa7kXUwO3i9TLHMhKaISm+5XOfuOyXqZKVRsrlMg6nuVymOyZCmSlMonMTn2KJTXMMmQpmZy5cyicsmZT7lM5e5G2XIGKkumTtL4eduu+3Lc7lrR/NaXS8uk2vWtUTXJ+0eL/eR1O3KUlGKbbeEkubZ6v8NttLaG0LLS6kcXM19IuuWH5s+bT+SxH/KcH/tBbWrZ7ZSdhSlitd/s137nOo/Ld9T/ABo2DRbZ16+8+UePv6f14HMPMHmGt5nuPMPn3Gkbj6M2PMQ8z3NbzPceYWI0xfRmx5g8w1+N9zHme5PGkG4bPmGONM1/M9xxliNMX0Zq6/cqnp7p551ZKP8AP+RxuMze3JdOValbfqRc39//ANv3nyozcmkvV8sHSdn7T0NjFv72X9PyReo092n5m3CUpYWMvokc225on0KKvLuC+kSX1Yv9Bf1NLbmgfRVG+voLznzhTa+x7v3/AIfw5Ip9zUtpdfVbNnaP1fvNdfBeHe+vlzxd5cb37OHLqbCkTUjXUiamzSN0xTiXqRJSKFLqTUkxd0jcS5TaJqRQn2ZJSwJujHEvUmialkoUiSkG6RuJqa7cOnaRpJ86kufyXP8AofFjIv1y58y8VJSyqUfT3fP+GDThJM27TaHoraPjx+P8jIUKe7TRtwl1L6c8mnCRbGRbcR0om4pdS2MjVhPJbGXYicSCUTxN+VD3pVtdpbL8P6HDwanf3GrXDUsSiremqdOOOqk7ib+cEfneeoPyie8a24/iEraCqmbfbGl2tjGClleZUi685Y6N+dGL9oI8vnedk7T7Jo9GLXGS3n/ieV8sHGNpbj7RqdVrlF7vw4P55AANjMEemvAjWIalsCjZ8TdTTa9S3km+eG+OL+WJ4+5nYj9cnn/4c9cdtr2o7fqY8u+t1Xg2+anTeMJe8Zt/5UegOhn7afpKMX3cD2v2Z6qtW2XtZt+tTXo3/g4L/Tuv3nMtl6j51tPTqkvrUHxU/wDC/X8H/E5OmdYaVfz02/pXcc4i8TS6xfqjsunUhVhGpCScZJNNejRznaaw+zXXpor1Z8ff1/X3m6TjhlyeCaeSlPuSTwavKJE0XJ9ySeCtSJJ4InEjaLE+xJPJWn2JJ5InEY0WKXckngrUu5JPBFKIxosT6onGRUn1RJPJDKAxxyXqRJPBQpE4yIZRI2i1PsSUu5Wnkkn3IpRGtFibRJPsVJ4JJ9iJxGNFql3JJ4KlLuSTwRuIxosT7E1LBSnkkpdyJxGtG/p2oXGm3lK+tZ8NSlLK7NdU/Znb2j6tbazYU761fKXKUc84S6xZ0on2PtbY3HW0C+U3xTtquFWprqu690a3r+jf3jR36S/aR5eK7v08fMwesaZ9sp79P21813fodR+PPh09l7olqmnUHHSdXlKtR4U+GjV9Z0/bm8r2eOjOsT3Nu7bGj+Im1K+jXU4yoXcOO3rxXE6VRL6lRe6fTqsrqeK9x7e1Paut3egavQ8q6tKjhJdJL1Uk+qaw18z192EdpC2w0f8Auq/l/wBbbJKWec4LhGfi17M/HDftI82bU6K9NuXWpr9nN/B9V9V8Oh80AHeDVgnh5RdTqFITaeUKI1k3oTL4TNCnUNiE/cORVqUzehPBfCoaEJl8J49GOKk6ZvRmXRmaMKhdCfZi5Kk6ZuRmWKeOeTUjMtjMcmV5QwbUajLY1Pc01P3JqfuOTG4N1VGTVVM0o1GWKpyHpj1E21Uz1M+YjVU0Z4+zHpk0YmzxjjNfjY4/cepFmCNjjHGa/G+5jjY9SLcEXuZhzXcodQi6i7jky9TLpVMIrlPJVKp6kJT9xyZfposlURXKZCU0VTmxcl+mSnPsVSkRlPBXKfdi5L9MzKfqUzn06Cc+XNmLW1utRvKNhZ0ZVa9xONOnCPrKTeEiOrVhSg6lRpRSy2+CSXNvyL1KLk8I574MbSW4tzrVLykpWOkuNaSfpOr/ALOP3NcX3e56Q8z3OMbJ21b7P29baNRalUivMuKi/wBpVf2n8vRL2SPu+afN/tX20lt5tHUvKTf2en6lJfup8ZY75vMu/GE+R0zS9P8AsVuoS9p8X5/yNrzPcx5hreYPM6HOY0jI+jNnzF3HmJmr5o8z3J40g9GbXmDzF3NbzDHme5YjSD0Zs+Z7jzDW8z3KL2rW+jyhbwc61T6lOK9W3/T1+4s0Ld1ZqC6h6M+BfXLvdQqzp5nxz4YYXNr0WEcu25tyNko3t9FSuHzhB81T/wCJDb+36WlxVxcONS6a9ekPZe/ufdUuxkde2hVSn9g094ppYcu/HDC8Pz8ucF1cby9HT5G2pMmpGrGo+5ZGeUaRumLcTZUiSma6mTUw3SJxNhTJqRrqRNS9xHEjcTYUkSUihSJKXuG6RuJsKSMuahFzk+SWWUqRpazd+RYTjl8VV8Cx+/8AcS0KLrVI011Y2NNykoo+NVruvXqVpcuOTljsSjL3NOEupfCRvPo1FYRldxJYRtQkXRkjVjIthIY4kbibUJk53NK3ozr16sadOnFznOTwoxXNtvtg14yOovi435DYHw+bv1OPO51GzekW0c4bqXL8ptf4YSnP/KPtrWV3XhQhzk0vi8FO7qxtaE68+UU38Fk/KnxN3dW374ibl3pXrVKr1rVbm9g5ttqnOpJwjz5pRjwxS6JJHGgD0TTpxpQVOPJLC9x58qVJVZupLm3n4gADxh9vZGuLbe7dK1udRwp21zF1ZJZapS+rPl/hcj2GmpLMWmpLKa6niE9Y+Fe4P7x7F0y8qVIzr29P6JXw8tTp/V5+7jwy/wAxlNOqe1TfmehOwnWd2rdaPN+0lUj5rEZfFbvwZyw5ps/U/pFpKwqy/OW/OHvD/g/5HDH6mxpt9U069p3dPP1H9ZZ+1HqiPWLBX9tKn97mvNfryPRkkdnJ9ySeDXoV6dxShXpSUoVIqUWuqZang5RODi8SIWi1PsTUilPsSTIZRGNFyfYknkqjImnkhlEjaLE+5JPBWn3Mp4I3EY0Wp9iSeSpPsSTyROIxotUu5JPsVJ9ySfYhlAY0WqRYpFCeSSkRSiMcS9PBlPJUpk00yJxGNFil3JJ9ipPuST7MicRrRankymVppmU8EbiMaLU+xlS7laZJS7kbiMaOU7Q3ZPRKys7yTnY1Hz9W6T7r27r/AOnPxp8LqPiLokNY0RU3rNjTzbyTWLmlzflN5x6vMW+rffJxRPscn2lvCrolRWV65TspP5uk31Xt3X3/ADxdOWobPanS2h0KW7cU3nHSa5NNdcrg11Xc8M1LaTZulqtGeI5zzXf4rxXz/PybVpVaFWdCvTlTqU5OE4SWHGSeGmujInpXxv8ACClui2nvvZlKNW9VPzLu3orP0uCX24Jes0vVfpL3XPzU002mmmuTTPdWwG3mndoGlR1Cye7UjwqU37VOfVPvT5xl1Xc00vM+r6TX0i4dGquHR96/XvXQAA3gxYTaeUW06hUPT0FEaybsJ+nMujM0IVOZfComBXnTN6M8l0Knc0Y1PctjU7i5Ks6ZvRqFsZmjGeOpbGoKVpUzdjU9yamaiqE1MXJBKmban2JKoaqqElU7McmNUcG2qhnj5+pqqZJTXcemWIo2eP3HH2Zr8fL1HH+0PUizBGxx+5jj9yjj9zDn7jlIt00XOou5FzwUuax6kXPsPTLlNYLnMg5+5U5vuRlNDt4vU0WSqYK5Tb9WQlUz6Fcp4HZL9NE5T7FUp4Iyn3eCqVTohcl6mjM59zujwX2O7Kkt36pSar14uNlCS5wpv1qfOS5L2z3OG+GGwp7nvVq2p0mtKtp80/8AbzX6C/ZXV/d8u/ozUUoxSUVySXQ8u9vHaWqVGWymlT9aX/vSXRf/ABrxf3+5er1aXQNmdGlPF7WXD7q+v6fE3PNHmGp5vuPM9zyPGkbx6M2vMwZ801fNHme5PGiHoza8z3Hm+5q+b7jzM+5PGkHoza8zqY8z3NbzDZtbapXxKWYw79/kPko0470hsoqCyyyjGpXlwU1nv2R9e1t6dvHk8yfrIpoxhSgoQjhIuUzFXFxKr6seCKFabnwXI2VMmpmspk1Mp7pUcTZjLsyal1NaM+5NT7CbpG4m1Gp3JqRqqRNTE3CJwNpSJqRrKZOM0I4kcoGype5NSNdSJKfuN3SJxNmMjj2v3fm3ioRf1aKw/wDE/X+R9evcwt6E683yhFyZxCVedarKrOXFKbcn82Z3Q7XfqOs+S/N/y/MntqWZb3cbUZdC6EjUjIthM2RxLjibkZ4LYyNSMi2EiNxI3E24yweF/wApf4hSa2l4XWl2uF+Zrl9RS5550rdt/wD7jl8n2PccZe5+QfxOeIn/ACn+OG6dzUXH6HTu3p9lwz4ou3t15UJp/t8Ln7ObRtWxlh9o1H00lwprPvfBfV+40nbe8+yab6FPjUePcuL+i951aADrpxsAAAB3H8Oe4/o+p6htes/qXkFdUMy9KkOUkl1bi0/8h04fT2xrlbbW4LDXqEXKVlXjUcFLh44+ko56Zi2vvJrep6Kopmy7H649nNbt9Rz6sZet/C+Evk3jxPZfQwQtbmheW1K8tqinRuKcatOS9JRksp/gyZn5I92ZjOKlF5TOVbQ1XlLS68/TMqWX+Mf5/icqTOrqNapb1YV6MnGcJKUX2Z2HpeoU9Ss4XVPCb5Tjn7MuqOfbR6d6Gr9pgvVlz8/5/mRPgfQTJJlSfYkmarKI1otTySTwVJ5JJ4IXEa0XKWSSeClPsTjIicSNxLU+xJPJUn2JJ5InEY0WJ9ySfYrT7mU+xG4jGi1MkpdypPJJS7kTiNaLU+xJSKk+xlMilAY4l6kST7MoTaJqRE4jGi5S7mU2itSJJ9iJxGNFiaJKRUmiSbRG4jWixPsSUu5UmSUu5G4jWjkG2t2Xu36qp5da0k8zot+nvF9H+5/vPgeK/hBYbxtqu+fD2EJXks1L2xhydZ9ZRj+jU7x/S9Vz+0T7M3dK1i/0a6V1YV3TmvtL9Ga7SXUk0i/1DZjU46zok9ysuEk/YqR6xmlzXc+afFcUsantJsra6/QcJrEu/wAe/wAH4+55PNNSE6U5UqsJQnBuMoyWGmvVNGD0dvjYO3vFSE9V0R0NJ3OlmdKWI0b1/P8AX/a9ejyua8+6vo+qaDqFbStYsatpd28uGpSqxw1/VdmuT6HsrYXtC03bi2/Y/s7iC/aUpP1o+K/HBvlNcOjw+B5s17Z682frujcx4dH0f9f+DTABvpggSjNr1IgBOZswqlsZ+5optehbCp/9hSOVPJvRqe5ZGZpRqlsanTIZK8qZuRqNdSyNU041PfBNVBckEqZuqp7k1URpKp7k1Ua6ikTpG4qnuZ4zUVQkqr7ipixibXmew8w1vMfceY+49MswibHme440a/me5h1H3HpluES9z7Iw6j7lDqe5F1F3HplyES51Pcg55KXUIup7jky7TiWyn7kHPkVuZXKp7i7xfposlUycm2Jsa83hfKpV4qOm0JLz63o5/sQ7t/u/BOex/D+93PVhfX6nb6ZF85+kq3tD2/a9DvCwtrPTLOlYafQjQt6MeGEIrkl/N+/U4P2p9rlLZ6nPSNEkpXb4SkuKpd/nPuXKPN8Vh9A2a2WqXuLq7WKfRdZfy/Pp3m9Y21pplnSsLChGjb0YqFOnH0SRf5uepped7mfOR42nGdabq1W3JvLb4tt8231bOoqgorEVhG55nuZVT3NLzjPnIdGgL6I3PMHm9zT84z5xNGiJ6I2/N9yUZSnJRgm2+hXb29WviT+pHu/U+nQp06CxCPPq+rIa1aFHguLIKkow4LmStrOMcTr4k/1eiN9TXojWUyakYqrKVV5kY+pmbyzZUyyMzVUyanj0IdwhcDajPHUmpGqp5LIz9xNwicTZjMmpmspk1IRwInE2YySLFLsasZ+5NS7MTdI3E2VMmpGupZJKb7jdwicDZjMtUzUjMk6kYRc5ySjFZbfRCbmeCI3A0dxXrhShZwlzqfXn8l6fv/gfEhLqV3d5K8up3EuXE+Sz6LoYjL3N5sbT7LQjT69fP+uBkKVL0cEjbhIvjJmnGZdGZO4iuJtxkWxkakZl0ZEbgRuJ1z8S3iSvCzwV3LuehUnC+qWzsNPcJcMlc1/zcJp/scTn8oPqfkOeyfyi/ia9S3HoXhVYV5+TpNP+1dQin9WVxVTjRi/eNPjfyrHjY6tsjYfZLD0sl61R593Jfr7ziO3GofbNS9BF+rTWPfzf0XuAANpNMAAAAAAA9J+A253rW0HpFeWbjRp+TzllujLLg/bH1o/KKOy33PKfhLutbT3naXFxVjCzvP8ARLlyeFGEmsSb6YkovPbJ6s9jO2lX0tJZ5rgex+yjaL+/tn4UajzVoepLyXsP/Lw8XFmD6u3dXemXnDVf+j1sRn+y+kj5QI7u3hc05Uqi4M6RJHaK7pmUzjm1NY+kUlp1xP8AO0l+bb/Sj2+a/gci9fmcwvbOdnVdKfT5rvIyaZJPBUnjkyaZRlEMZLE+xJPJUn2JJ5IXEa0WqRNPJSpdySZG4jGi5PBJPsVKRJPsROJG0WJkkytS7mU8ETiNaLU+xJPuVJ9iSl3I3EY0WJ4JJlSZJMjlAa0WqWCSkVJmU+xDKAxxL1LJJNlCkTUyNxGNFqaJJsqUkySbI3Ea0WJ5JKTKk0STZG4jWixSw008NehbrlDR95afDS932krh0Y8NtqFLCurf73/rI/sy/HODXTRlNjqFWtZ14XVtNwqQeYyi8NPwa7+TXJrg01wMfqGmWuqUXb3cFKL7zqDeHh5rG05Su4yjqGluWKd9Qi+FZfJVI+tOXs/ubOLHoynVlDiUXymuGUWsxlHqpJ8mvZ8mcH3P4a2OoOd7oChZV3zdDn5M3np1h8lleiSR6M2M7YqVyo2e0WIT5Kql6r/jS9l97Xq+EUcM2l7LbqzbuNIfpIfgftLy/F+fmdVg2dR0y/0m4drqNrUoVV0kvVd0/Rr3RrHdaNancU1VoyUovimnlNeDXM5PVpTozdOrFqS5prDXmgACQYZUmvcsjV9yoCiNJm1Gr3ZNVPc01JrqSVTHsBG6eTdVT7yaqe7NONX3yTVUOJE6Ztqp7oyqnsaqqruSUwyM9Hg2lMz5nuavm+7Hm+45MmhA2nU9yLqGu6vuYdTrkemW4QNh1CPmFDqEXUH5LkIl7qe5GVQo8xd0ci27sXXtxOFZUXa2ksPz6yxld4x9Zfw9zH6prNjols7vUasadNdZPHuXVvwWWzLafp9zqFVUbWDlJ9F9e5eL4HwoKrXqRoUKcqlSbUYxgstvskvU7K2d4XrMNS3RDtKFmn/43/8ACvv7HJtubQ0XbNNStKPm3LWJXFTnN/L9VfL78n3vOPMm3XbXdaqpWGzuaVJ8HUfCcv4fwLx9r+Hkdh2e2ChaYr6jiU+kfurz738vM26coUoRpUoxhCCUYxisJJdEifm+5peb7mVV9zgHoXJ5Z0L0WORuqqPN9zT83PUz5vuSKgJ6I3PNM+b7mvShVrfYjy79DfoWlOOJVJcb7dBs5U6XPmRT3YcyNGnWrvEI8u79D6Vva0qWJT+vLu1yRCEkkkuWCxSMdWrzqcFwRRqTlLguRtqfuTjPuasZlin7lNwKkoGyp9SxTNVT7lkZjXAilA2VL3LIywasZ5LFMbuETgbKkWRmaqmTUhHAjcDajP3JqRrKfuTU8dRu4ROBsqePUnGfua0Z+xNTG7hG4Gype5YpZ9TVjPuyakJukTibSkfL3BfqlQjZweJ1ucvaP/F/wZt1LiFCnKrVeIwTbfscRubud5cTuJ8nN8l2XRGW0ay9PW9LJcI/n0/UfQo70t58kWwkXQl1NOEmXxlk25wLjibcJF0JZNSMvctjIicBjibcZGtreuWG3NE1DcGq1vKstMtat5cz9eGlTg5zf4JlkJnlr4+/FSO2/D2z8NtNueG/3RUVS6UJ4lTsqUk3lLmuOooxXRqFRFmwsZX1zC3j1fy6v4GJ1i+hpVlUu5/dXDxfRe94PC/iHvXUvEXfGt731aU/pOs3lS5cJzc/Kg3iFNN9IQUYL2ijjwB2eEI04qEFhLgjzXVqSrTdSby28t+LAAHDAAAAAAAB6q8JN3f3t2dbVq9RyvrDFpdZ9ZSivqy98xw898nlU554NbxW1N206N3WULDU0ra4cpYjCWfqTfTk+WX6KTLdnW9FUw+T4HSOy7adbN67CNaWKNb1Jdyy/Vl7nzfRNnqJmDPsYMzNHsqSJ0a1S3qwr0ZuM4NNNdGc/wBI1Slqlqq0cRqR5VI/qv8Aodem5pWp1dLulcQy4v6tSH60TA6vpyvaeY+2uX6ELR2LnuOaKLa5pXVCFxQmp05rKaLk+xz6pTcW0+YhJPsTTyV+voE+5BKIFqfckmVqRJPsROIjRYnkkpYKk8klLuROIxouUiSeClPsSUiNxGOJamSUu5UnkkpdyJxGNFqfYymitPsZUu5G4jWi1PBlMrTZlNMjcRrRapdzKfZlabMp9iNwGtFqkTUylS7mU+zInAY4l6kiSfYoUiSmRuIxouyZTK1Iyn2YxxEwWqRlPsVZ7kk/cjcRuCq+0+x1Og7bULSnXpvpOOcfLszhWs+FVtW462h3roybyqNbMofdJc196Zzvi7mcpmw6FtXrOzUs6dXcY9YvjF+cXw96w/EwGs7MaXr0cX1JSfSS4SXvXH3Ph4HRmr7Y13Q8y1HT6kKSePOj9am/8y5fd6nyz0Rl/ifH1HaG2dUcp3ek0o1Jf7Sj+al8/q8m/mmdk0btyg0oaxbNP8VN/wDGTWP8z8jlOq9kNRNz0yumvwz5/wCZL/ijo8HZd94SWk4uWl6zVhLpC4pqSf8AmjjH4Hwbzwv3VbLitqNveR70ay/hLB0nTu0jZfUkty7jB908w+ckl8GzQb7YbX7DO/bSku+OJf7cv5HEgfWuNp7mtU3W0K9SXq40ZSX4rJ8ypQr0pOFWjOEl6qUWmjbbbULS9W9bVYzX7sk/yZrlezubV4r05R801+ZAKTXowC2ViSmzKqexAyoyfpFv7gzjmJu5Jqp7mfM65Nm20PWrzDtNIvKyfo4UJNfjg+pa+H+7bqSUdInSTfOVWcYJfc3n9xirvX9K0/P2q5pwx+KcV+bMpaaPf3ePQUJyz3Rb/JHwvMXceZ7o5zZeEWqVJJ6hqltQj18qLqS/fhHItO8Lds2b47t3F9LtUnwxX3Rw/wAWaXqfa5stpye7WdWXdCLfzeI/6jcLDs8128a3qSprvk0vksv5HU1GFe5qxoW1KpVqzeIwpxcpSfsl6nK9H8M9x6m41LyENPot83W5zx7QX82jtaxsNO0yl5OnWNC3gulOCWfn3Nh1H3OW6726ajcp09HoKkvxT9aXmlwin57x0DSuy+1oYnqFVzfdH1V8eb92Dj+heH+3dDcazoO8uY8/NuEnh+0fRfvfucldRLkUOZFzOMapqeoa5X+06lWlUn3yeceCXJLwWEdHsdMtdOp+itaahHwX5978WXOqRdR9ylScniKbfsicaFafPCj82UNyMOZe3UuZLzX3JKq28LLfTBKFpBPMpuX7jZpqFPlCKRHKtCPsrJHKUVyI0qFaf2sQXv6m5Rt6UMN/WfuVRn1LI1CpUqznw5FWcpSNyM0kWxqGmpk4zKjgVZQN2M0WKeDSjP3LY1OQxwIpQNxTJxmjUjU7MtjMY6ZC4G0pFkZo1IzLFMa4EMoG0plkZmrGfL1JqY1wInA2lIsjPuakZlimMcCJwNpSJxnnqasZlimN3CJwNqM8E1PuaqmTUxrgRuBtKZOM/c1ozKNR1GGn2sq8sOT5Qi+sh1OjKrNQgstkfo23hGnuLU8yWn0pcliVVrv0X8/wPjwnnqannTqTlUqScpSeW31ZdGRvlpZxtKKpR9/mX4UVTjg3YSLYyNOE3yL4y6krgI4G3CZdGXM04y5F0ZLuRuBG4l9a6oWlvVu7qtCjRoQlUqVJySjCKWXJt+iSTPyf8f8AxQq+L3inrO8I1G7B1Pommxaa4LOnlU+T5py5za/Wm/ke0Pjb8XJ7E8NY7M0i5dPVt28dtKUJpSpWUcedLv8AXyqa7qU+eUfnWbvspp/o4SvJri+C8ur+P5HG+0fWFUrQ0uk+EfWl5vkvcuPvXcAAbicuAAAAAAAAAAAAAD1N4Rb0W8NqUlc1XLUdN4ba6y+c8L6lT/Ml+Kkc4fc8m+GO857K3TQv6s2rK4/0e8jjP5tv7Xzi8P7mup6xhOFWEalOalCaUoyTymn6NGdta3pqfHmj2X2X7VrafRY068s16OIz72vuy96WH+8mDD7mQOnE6JJH1tv63LTK/wBHrybtqr5/sPv/AFObxlGSUoSTT5prqdY46HIdt695Djp95P6jeKc3+i+z9jV9Z0z0ubikuPVd/j5kfI5enklnPqVJ5JJ4NPlACfNfIyn2Ip9jPr6EMoATTySTKk8cmSUiJxDGS1PsSUu5Un2JKXcicRrRYm0TUilPsSTTI3EY0XJ9jKl3KlJklIicRriWp9jKkVp9jKl3GOIxotTZlNMrTMqRG4jcFuWZTRWm0ZyiNxGtFqkzKfYry0ZyiNwGtFikyamU5aM8SI3Aa4l6mSyihNmVIjcBjiX5aM8SKlMkpZGOI3BYm+hni7lafZmcsY4iNFmUZz1K8oymxjiN3S1VJpYU5L9/8STqyl9pQl80U8XczlDNzrgY6afNEnStp86lpRb94J/yK/omnSbctNoL3dKJPLM8XckVarDhGTXvf6kLtqUucV8CMbWwjzhZUV8qS/oWxdKP2KaXyhgjlGcvuRznOftyb94saNOHKKRPzH7/AIGHP2f4EeIzxIi3Uug/A42/SMvwYzL9V/gZT7MzlhwXQCCVR/o4+b/oZVKb/Siv3kuIzxIRyfQMseRF+s5E1SpL0gn8+ZDK7mcsY959Rry+pcnj0HF7FXEzPGRejGbrLeJBSRVxmeMbuCbpfGZZGfuanGTjP3EdMa4G5GeCyMzUjPuTjPoMdMhlA3Iz9yxTNSMyyNQY4EMoG3Gp0yWRqNGmp+5bGeeoxwIpQNyNQsjUNKM+zLY1CNwIZQNxTJxqGpGp7limNcCGUDbjP3LIzS6mmplkZ+4xwInA21InGfc1YzLIzYxwInA2lP3JRn7mtGZNT7Ma4EUoGy6sYQc5yUYxWW36JHEtU1OWo3TqLPlQ+rTXt3+8u3Bq6k3p1vNYT/OtP1f6v9T40JYNr0XTPRR+0VFxfLwX8/yLFGhj12bkJouhI1IvoXRk1yM64EzibcZ8i6EzUjPJbGRG6ZHKJuwnkjeaha6bZV9Rv7iFC2taUq1arN4jCnFNyk/ZJNlUZ9cnlz44fGRaDtqh4VaHdpahrkFX1NwbUqNmn9WGV1qSTyv1YSTWJJk9pZSvK0aMevyXVmG1vUqWi2NS9q/dXBd76L3v5ceh5V8c/FG68X/ErVN41OOFnOSttOozWHRtKeVTTWXhvLnLn9qcscjgIB06lSjRgqcFhJYR5durmpeVp3FZ5lJtvzYABIQAAAAAAAAAAAAAAPQ3gNvn+2NIltLUKqd3psM2zb51LfPp84tpfJx7M88m/oOt323NYtNb02pwXFpUVSOfRr0cX7NNp+zJ7as6E97p1Nu2I2pq7JavTvo8ab9Wa74Pn71zXiscmz2e+fMwfL2vuOw3Xodrr2nS/NXMMyg3l05rlKD90/69T6voZ54kso9vW9xSvKMLihLehJJprk01lP3mGRazzJGGVpxFkjlG3NfVRR0++n9ZcqVRv1/Zfv2OSJ4OsmsHKtv7h8/hsb6f530p1G/tez9/4/M1PVtLw3XorzX1Qw5Kn2JJ9ypMkpdzWnEUsz3M+6IJ4JJkMoASUiSl3Icn6jmiGUQLU+xlMqTJKXcicQayWp4MporTwZTTI3EY0WqRJSyVJsyn2I3Ea0XJ9jKl3KlIkpEbiMcS1PsZUu5Wn2MqXcY4jWi1PsZ4u5Wn2M8XcjcRuCxPsZUu5Wn2M8XcY4jWi1PszPF3K0+xniYxwEwWJ9mZ4mV5RnLRG4DXEtUySmU8Xcyn2YxwGuJepGU+zKFJklMY4jWi7LM8SKlMkpDHEbgsT7MzxMryjOX3GuImCziQT7Mr4vYzlDHATBZlmeLuV57MzxMbuibpZlDPZlfF7GcoTcG7pZlmeIrz2ZniY3dEwT4kMruQ4vYcQ3dDBZn3M5ZXlDPZibomCziY4vYhl9xxMTdEwWcSCkiviZni9hN0MF0ajRbGpnqanESjMa4ZGShk3Yz9yxTNONT3LI1PcY6ZDKBuRmWRkakZ9SyM0RuBDKBtxmWRn7mpGaLIz+QxwIpQNtTLI1GuppxmWRmMcCFwN2NTPUmpmnGfUsjUfcY4EMoG5GZZGZqRqZLIzGOBDKBtRnk+fresrT6Pk0pfn6i+r+yu/wDQjqeqUtNt3Vm05y5U4Z+0/wChw+rc1buvOvWnxTm8tszOkaV9pl6aqvUXzf6f+B9KhvvL5GxGbk+Jybb5tl8J8ubNOEmXwkvQ3F0y04G7CfL1Loz6ZNKE8F8J5GOmRuBtxmi6MzTjLJdGWOpG4ETifL31vfRvD3aOp7x16o42emUHUcV9qrP0hTj+1KTUV8+fI/LTe+8NZ3/uvU947gqqpfapXdapw54YL0jCOW2oxioxSz6RR3h8YvjQt87qj4f6FdKeibdrPz5w9Lm+ScZSznnGCbgvTm5+qaPOhuOiWH2Wl6Wa9aXyX9fQ88doW0a1a9+xW7/ZUn/mlyb8lyXvfUAAzhzwAAAAAAAAAAAAAAAAAAAA7G8GPEH+6Wt/2TqdZrStSkozcpfVoVfSNT5P0fth/onpj2PEJ6H8DvERa7p8dpavXX9oWNP/AEacnzr0V095R/esPo2ZSxuP+zL3foehexvbdUpLZy/lwfGk30fNw9/OPjldUjtYGXzXuYL8onoySMY6EcYZMw1nkVZxIZROT6BuJVeGx1GeJ+lOq/0vZ+/ucky16nWTXQ5FoO5XS4bLUZ5h6Qqt+ns/b3NZ1LSs5q0F5r9P0Gp44M5Yn2JJorTUkpRfrz+ZnPc1qUBxYpdySfYrTMp9iKUALOT9hlr1IqXcymQuAE0+xlMhy6DLXqROIFqZlNFafYymRuINFqbMporTMpojcRrRapMkpFSZlNDHEY0WpolxMpTZJTI3Ea4lqaM5ZWmjKYxxGuJamjKbK+LuZT7MY4jcFnF3Mp9mV8RnK7jHEbgs4jOV3K8szxIY4iYLE2Z4itPszPEMcBMFifZmeJleUZT7MY4DcFimSUyriM5Q1wG7pcpmeJFGezM8TGOIm6y/KM57Mo4ySmNcRuC3iZni9ipTM8Y3dEwWZXcznsyviRnKG7oYLOJji9ivPuZyxNwTBPiRnKK890Z4vYTcEwTyu5nPuV5QyhN0TBZl9zPEyvPuM+4m6G6WcTHEV5ZniYm6Julqn7lkZ+5rcTJKeBHAbKBtxqMujM0o1EWRn7kbpkUoG5GZap8vU041O5ZGZG4EEoG2pvuWKZqKeSyMxjgQygbcZlkZ+5qRmWKYxwInA2lMheajR0+3dxXlhL0XWT7I1brULexoSuLifDFckurfZHDr/VLjUrjzqzxFcoQzyijJaZpMr6e9LhBc33+CEhQc3x5G1ealW1C5lcV5c3yUekV2EJdmaNORfCWOZu8aEacVCCwkWvR4WEb0Jl0JdMmnCeS+EhHTI3A24SLoT5GnGeORdGQx0xjgbkJp8snS3xR+N0fC/Z70LQ7pLcmu050rZwl9a0oek67XR/ow9PrZazwNHYW+986J4dbVvt27gr8FtZU8xhFrjrVH9mnBP1lJ8l97fJNn5s7/AN9a54j7rvt3bgrcVzeTzGnFvgoU19inBP0jFfzb5tmQ03T1cVN+a9VfN/1zOa9oe1C0O0+x20v29Rf5Y9Zeb5R976HHvUAG2nnAAAAAAAAAAAAAAAAAAAAAAAABs6bqN7pF/Q1PTriVG5tpqpTqRfNNfy7rqjWAqeHlD6dSdKaqU3iSeU1zTXJo9ceH2+LHfWg09SoOFO7pYp3lunzp1MeqWc8L5tP7vVM5M+6PIOx956jsfXaWr2L46b+pc0G/q1qbfNfNeqfR+2UesND1vTdxaXb6zpNwq1rcx4ovqn1jJdGnya7mctbhXEcP2kexezbbqG1tj6C5aV1TXrL8S5Ka8/vdz8GjdBlmCSUTpDRh8/mRayTaMNZ+ZWlEilE+rom4a2nuNtdZqW/T9aHy9vY5lRr0rilGtRnGcJLKkmdbNZNzS9XutKq8VJ8VOX26bfJ/0fuYO/0uNfNSnwl+YxPB2B8n9xlM0tO1S01Ol5ttPmvtQfKUfmbmc+pq9SlKEnGSwx3MmpdzKfZkOfzCZA4ilql3M5K1LuZT7MicALPkMtepHiM5InACafYzxdyHIZaInAC1PszPF3KlIlxdyNxDGSxPszKl3K0+zJKXcY4jcFifZmVIrT7MzxMY4jcFqkSTXcpTRnLGOI1xLsszlFSmSUhjiNcSxPszPF7FafZmcsY4jcFmV3M5ZXxIyn2Y1xEwWcRnK7lfExxIY4iYLcscXsVp9mZ4mNcRuCzK7mcvuV8SM57Ma4iYLOIcSIZY4vYa4CYLMruZyyviQz7jXATdLeJhTK8vuZ4hu4JulnH7mePsVcQ4kN3BN0uU/czx+5Tn3M5fcTcE3WXcaHEiniY4mN3RN1l+UMop42OMN0MF2V3Gfcq4/ccfuJuCYLc+5nLKeMcYm4GDYU8FkZmpxk4zEcBrhk3Iz9yyNT3NSMycZkbgQygbsahZGfuacZk4zGOmQygbsZld7qVtp9B17ieF+jFesn2R87UdattLo8deXFUa+pTXrJ/yXucPu9TutSuHXup5/VivSK7IyumaLO+e/PhD8/L9RIW7nxfI37/VbjVK/nVniK5Qgnyiv6+5CnNP1ZpQnkuhJm7U7aNGChBYSLHo0lhG/CXdl0Z+5pU59y6EuWQdMY4G7CXVMvjUaNKE36YLYTwRumRuBvRmu5mtdULShUurqvCjRowlUqVKklGMIpZcm3ySS55NaMzyj8VPjw76dx4W7RvP9Hpy4NZuab/1kk//ACeL7Jr67Xq/q+ikm6jayrzUYmt7S69bbNWEry44vlGPWUuiX1fRHX3xG+NlfxX3MrDSa047b0ico2UOa+kVPSVxJd36RT9I9nKR1AAbNSpRowUIckeS9T1K41e7ne3Uszm8v6JeCXBeAABIUAAAAAAAAAAAAAAAAAAAAAAAAAAABzvwq8SbjY2qfRr6dSpo95JK4prL8qXSrFd+6XqvdI4IB9OpKlJSjzMlpGr3ehXtO/sZbtSDyvqn3prg13Htq3uKF3b0ru1rQq0K8FUpzg8xlFrKafZom1g85+D/AIqS2vXhtzX67ekV5/mqsv8AzWbfr/gb9e3r3PRkJwnCM4SUoSWYyTymn1RnqNaNxDejz6ntTY7a+z2x09XVv6tSPCcOsX9Yv7r6+aaQGWsGAlA2qUTDWfmQaLGjGM/MrSiROIoXFe0rRr29WVOpH0aOW6PuehecNve8NGv6J/oz/o/Y4g0RaMdd2VO5WJLj3kfGPI7NT7Gcp+pwnSdy3Nhw0brirUFyT/Sivbv95y60vra+pKtbVVOL9cdH2fY1i6sqls/WWV3jlJM2efzCfYjnsZyn6lFwHE+LuZT7MhzXuEyJwAtUu5lPsytS7mUyNwAs5DmiHF3JJkTgBJSMqRHPcfJkbgBZlGcsqy+plS7MjcA4Mt4kZT7Mr4u5lNDHERxLOLuZTRXlmeJDHEbgt4mZUypPsZ4hjiJgtUkZTXcqyjOWMcRu6XZY4ipSJKY1wG7pZldzOX3K+JGc+41xE3Szi9hxIhlji9hriJgsz2ZnLK8oyn2Y3dG4LOL2HEiHExxewjiGCzPuZy+5VxIzn3G7omCziY4vYhl9xxMTcEwWcSGV3IcXsOJCbomCzPuMvuV5RnK7ibgYJ5ZniZXnszOX3E3AwT4vYcXsQyxxMTcEwT4hxIhxMcXsJuBgnxIyp45or4vYcXsG4GC+NUtjNvqafF7EnXhTi6lSSjGKzJt4SXcR088hkoZN6M2j5msblt9NToUWqtz+r0h8/wChx/WN3uXFa6XLC9JVur/w/wBT4EKjlLik22+bb6myabs7KpirdLC7u/z/AEFjbZ4yPpVLyveVpV7mo5zl6tlsJZ5GhCWS+FR+htaoKK3YrCJfR9xvQnz9TYhNPkjQhMvhPsxrpDHA34yz1LYT9zRhU6Nl8J559CN0iNwN6FRF0ZruaMZnV/jn422nhfo707TJ06247+k3a0n9ZW8HledNdk0+FP1a7JjFQcnhGJ1bUbTRbSd9eS3YRXx7ku9voj5XxH+PENkadV2XtW9zuG8p4r1qcudhSkvXKeVVaa4eyfF+rnxhKUpScpNtt5bfq2X39/e6re19S1K6q3N1c1JVa1apJylObeW236soMtQoxoxwuZ5F2r2nudqb53NbhBcIR6RX6vq+vkkAATGsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO3vB/xcWjOltXdFz/oEnw2t3Ul/wCTvpCT/U7P9H5fZ6hBLRqyoy3omd2c2ivtl7+N/YSxJcGnykusZLufxT4rDR7eTWMp5T9GYawdBeEfjDLSfJ2tuu5crB/UtbypLnb9oTf6nZ/o/wCH7PfsZRlFSjJSjJZTTymjO0qsbiO9E9n7KbWWG19iruzeJLhOD9qD7n3p9HyfmmkAawBJQNkcTDWfUi13RMw/cglAicStostrq5savnWtaVOXt1+a6mGsEWuxWnTUlhkTics0vddvcYpXyVCp+t+g/wCh95TTSaeU+qOs3E3tO1u/0xqNOfHS6058193Ywl1pSl61Hh4AptczsDPYznPqj5Gm7hsNQxDj8ms/0Jv1+T9GfVUu5gqtCdJ7s1gkTT5E+fRjP3Ec9jOe5A4Ckk2ZTRD5MznuiNwAsTZniRWn2Zni7kbgBYmORBPszPF3I3ACfNeg4u5HKJZI3ACSl2Zni7kOQ5oY4AWJmcsq4u5JS7MY4BhMs4kZT7Mr4u5nKGOIm6WcTM8SK8vuZ4hjiJgsT7MzxMqyjKfZjXEbgtUzKmVcTM8SGuIm6W8SGUVZXczl9xu6JuluX3M8TKuIzxibgm6WcXczxIr4zKkN3RN0nldzOX3K+JDK7ibom6WZZniZXnszOWJuiYJ8Q4kQ4mOITdDBZlDK7kOIcSE3RME8+5nL7leUMoN0MFmWMsryhldxN0TBZljLKK1xRtqUq1erGnCPrKTwkcY1XeLlxUNJjhejrSX/AIV/UuWenV76W7Sjw7+iHKG9yOQanrVlpVPiuauZtZjTjzlL/wCu5wvVtevdWnipLy6K5xpRfL7+7Pm1KtStUdWrUlUnJ5cpPLY5ehu2naHRssTfrT7+7y/rJPCkkW059zZhJ+rRpIthJ9WZr0RLuG/Tn8zYhNP0Z8+FRIvhUz6MY6I1wN+E8dS6FT3NGFRdWXQqdmRukQygb8Jp+rLoz7M+fGo+5wPxZ8ZdJ8M9M8qn5V5rlzDNrZNvEU8/namPSCa9OTk+S6tRuiYvVdRtNGtZ3t7NQpx5t/ku9volxZu+MHjNpfhbo/DT8q7126h/odnJvCXp5tTHNQTXplOT5Lq14m1vW9V3Hqtzret31W7vbubqVq1R5cn/ACSXJJckkkuRLXdd1bcurXGt65fVLu9up8dWrUfN9kuyS5JLkksI0B8KageRNtdtLna673n6tCPsQ/5S75P4JcF1bAAkNJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2p4U+MNbbUqW39y1p1tJbUaVZrina/wA3D29V07HVYJKVWVGW9EzWgbQX+zV7G+0+e7Jc10kusZLqn/NYaTPbdvcULqhTurWtCrRqxU4ThLMZRfo0+xPHY8weGvizqWx6sdPvlUvdGnLMqGczo59ZU8vHq8uL5P2byek9I1jTNe0+lquj3lO5tqyzGcH+5r1T7p8zO0K8LiOVz7j2JsZtzp+2VtvUXuVor16bfFeK/FHx6dUmbYM4z8zA6UDc3ExjsYx2JDBBKBG4kGiLXcsfuYawQOBG4lTT6H1NO3HqFhiEp+fSXLhm+aXs+h85rsRaK1WhGqsTWSLda4o5zp+4NOv8QVTyqr/Qqcm/k/Rn01I6yaaPoWOv6lYJQhW8ymlhQqc0vl1RhrjSetJ+5jlUxzOfJpkstHwLHden3GI3KdvP9rnF/f8A1PtU6sKkVOlOM4v0cXlGIq21Si8TWCRNPkW5XyM8/mQ4kZ+RXcRSWUZyyOe45dHgjcAJ8SJJ9mV5a9UE13GOAFvF3MpruV8THEiNwAtyORBPsxxDHACfPoMvqiOUZyyNwAkpIzxMjy7Dl0Y1wFJ8RnK7lfMcXdDHATgW5fccRXxLuZUmNcQwiziRlPsyviHEhu6JuluWOJlafZmcsbuCYLOJDKK+JmeJCbomCxPsxlleUZyu4m6Jgs4mOIry+5nLE3AwWcY4yviY4vYbuCbpbx/IcXyK+JDiQbobpbxDiRr1a9ChB1K9WFOC9ZSeEfA1DednQzTsKbrzxym/qwT/AIssW1hXu3ijFv8AL4hunJp1IU4uc5KMUstt4SPganvGzts0rCP0ip+t6QT/AJ/d+JxO/wBW1DU5ZuriThnKguUV9xqLkbRZbNQhidy8vuXL+fyHKBuXup32pVfNvK7njPDH0jH5Io9SJlGz06EacVGCwkSxiTT9zKZBMlkmVMlUSWW36GSGeXMySqmSJF8Kq9y+NTlyZpJ92ThU9xXRyDh3G/Cp3ZfCpyzk+fGpk6f8WfHi32/GvtzZ1ancam04VruLUqds+qj0lNfgn65eUoakI01lmvbRa/p+zNnK91Ce7Housn3RXV/Jc3hHKPFzxt0/w+t5aVpfl3uvVoZjSbzTtk/SdTHXqo+r9XhYz5L1bV9T17Ua+r6xfVbu8uZcdWtVlmUn/JJYSS5JJJcii5ubi8uKt3d151q9abqVKk5OUpyby22/VtlZRk8vJ482x20vtr7r0lb1aUfYgnwXi++T6v3LCAAENNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJNk7913YuoK60ytx21SS+kWk3+bqr+Uu0lz+a5HGwOjOUHvReGW7C/udMuIXdnNwqReU1wa/rquTXBnrzZm+9B3zYfS9Kr8NeCXn2s3ipSfuuq7SXJ/PKORezPFuk6vqehX9LVNIvKlrdUXmFSD5/Jr0afVPkz0J4deNel7mVLSNxOnYao/qxm3ijcP2b+zL2fq/R88GZt7yNb1Z8H+Z6l2E7WLTXlGw1dqlcck+UJvw/DJ9z4N8nx3Ts5rBgl6ehjGfQtSidjcTBjHYz8wQygRuJhoi13JmMfeQygMcSGOxFoswjDXsROBG4lbTLbW9u7KXFa3E6TfN8L5P5r0ZFrsYa9iGVJSWGRuOD79nvC4h9W+t41V+tD6r/D0f7j7dnr+l3mFTuowm19ip9V/v5P7jgfD2MNd0Y6tplKfFLAKUonZyllZ9UZymdc2upX9lhWt3UhFekc5j+D5H17XeN3T5XdtTqrvB8L/mjGVdKqx9h5HqoupzDLM57o+Jbbr0mthTqToSfSceX4rJ9Sjd21ws0K9Oov2Jp/wMfUt6lP244HqSfIv5dGZy+xDKM5ZA4Cksozlkc90OXR4GOAE+Iyn2ZDn8xnuMcALMszxexWn2ZniYxwAsyu4yV8SMp9mNcALMrsY5dyOWZ4vYY4AS59GMvsRyjOfca4AZ4vYzxLuRyOXYa4AT4vczxMr5Gfkxu4BPi9hxIhz7jL7DdwCzK7mc+5RUr06MeOrUjCPeUsI+bc7n0e2bj9J82S6Ulxfv8AT95LStatZ4pxb8g4H2cvuOJnD7retWS4bG0jD9qo8/uX9T493rGp3+Vc3k3F+sIvhjj5IytDZ+5q8amIr4v5fqNbXQ5ze6/pdjmNa6jKa/Qh9aX7vT7z4F9vWvU+pYW6pLn9ef1pfh6L95xlLsSUe5nLbQLWjxn6z8eXw/XIJZLrm8ur2fmXVxOrJenE84+XYqMrHoZwvmZuFFQW7FYQ9RCbZJGDKaRMoEiiZMrL6mMjJIoD0iS9jOcERl9CRUx6RLix6jiIj0JY0x6RPJTd3ltY29S8vbmnQoUYudSpUkoxgl1bfofE3fvnb+ydPd9rd2oykn5NCH1qtaXaMf5vCXVnmfxA8Udwb9uHSr1HaaZCWaNlTl9X2lN/py+fJdEueYa9eFBY5s59tr2jaZsfTdJv0lw1wpp8vGb+6vm+ixxXMfFDx3udahV0DZtSrbWMswrXvONSuu0F6wj68/V56c89OAGHqVJVJb0jyJtDtJqO1F473UZ70ui5Riu6K6L5vm23xAAGGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7P8PvG7Vtt+Xpe4/N1LTViMamc16K9m/tr2bz2fQ9AaJr2kbk0+nqmi31O6t6npKD5xf6sl6xfs+Z4wPq7c3Rrm1L9ajoV/Utqv6cVzhUXacXykub9fTphl+3vpU/VqcV8zsGxXa3f7PqNnqma1uuCf34Lwb9pL8L9zS4Hsl+4x2Os9ieOOg7iVLT9weXpWoy+rxSeLeq8foyf2X68pe2G2dmcnzTMtCUKq3oPJ6d0XXtN2itldabVU49cc0+6S5p+fuMAz8xhiSgZVxMGP3mQROAxxMNL5GGmSMY7ETgMcSLSMOJPHdGMdmRuAxxK3FdjHCW4ZjCI3AY4FWH2EW4yUoNxa9Gnhos4THD7DHTGOBtW+t6tbPNO+qNdpviX7z6NDeGo02vPoUaq9sxf9P3Hw+FdjHD7lapZ0p+1FB6y5M5XR3pbSeLiyqw94SUv6G7T3VotT1uJQf7VOX8jg/Cxh9ipPSaEuWV7xd6SOxaeraZVWaeoW7z/wBYkzYp1qdVZp1ITX7LTOscewxh5XJleWjRfKQvpH3HaOV2HykdaQvLumsQuq0flNosWqalH01C5X/rZf1IHosukvkL6TwOyMvsM9zruGuavD7OoVvvln+JYtxa0v8Az+f4L+gx6JU6SQvpEdg59xlnX394taf/AJ9P/dj/AEIy17WZcnf1fu5Cf3HVf3kHpEdicRnKOtnq2qy9dRuf/av+pCV9fz+1e1386khVoM3zkvgG/wCB2W5xisykkvdlM9SsKWfMvreOO9SK/mdaSc5vinNyfdvJjCJY7Px6z+X8w333HYNXc+i0W4u9jN/sRcv3pYNOtvXToJqjQr1H0ylFfx/kcMSXYzhdizDQraPPL9/6BvSOSV97XU1i2sqVP3nJy/hg+fX3LrNyuF3jpxfSmlH965nzMMzh9y7S0y2pezBfn+YvFk6lStWlx16s6ku8m2/3kRgyi7GklwQqgEsmUkgZ5Eipj1ELPQks9THP5GR6pj1EyB+4cl6cyRQHpElnuCKyZyx6gPSMmeXVkeLsMolVMckTz7jJDKOP7u35trZNqrjXL9RqzWaVtT+tWqevpHouT5vC9x7Uaa3pPCK95e22m0JXN3UUKcebk8Je9nInNRTbeEvVs6n8Q/HjS9CVXStpulqOoLMZXHrQov2a+2/ly7t+h1dv3xi3JvTjsaMnpuly5fRqM3xVFjH5yfLiXN8uS9OTaycCMXcX+fVpfE867adtM66lZbOLdjydVri/4E+X8T49yT4m7rGtaruC/qaprN9Vu7qq8yqVH+5L0iuyWEjSAMY3nizz9VrVK9R1asnKTeW28tvvbfNgAARgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOcbJ8Xd0bNULN1f7R02P/AJrXl9hfsT5uPp6c168upwcD4VJU3vQeGZHS9XvtEuFd6fVdOa6p/Jrk14NNHrTZ3ibtXekY0tOvfJvGsys7jEavpl8PSa9fTPvg5V8jxFCc6c41Kc3GUWnGSeGmuqOytneOu5tA8uz1z/neyjiOaksV4Lup/pf5s9OaMpR1GMuFVY8T0Jsr23UKyjbbQQ3Jf/JBZj/ijxa8458kj0n80MdjjW1PEbae8oxhpGpRVy85tK+IVlj1+rn6yxzzFtHJeXyMgt2azF5R3Sxv7TVKCubKpGpB8nFpr5dfDmYBnn1WRhdxrgWXEwDOGjBG4DXExjsxj2MgjdMa4kcL5DHYkMIY4DXEjh9jGPYnj3MYGuAm6Qwhwk8ewwuzG7g3cIcI4WSwhhdxNwN0hgcPsiePcY90G4JukOH2CRPHuhj3QbgbpHhY4SWF3GF3DcDcI8PuMInhdmMewu4LuEcLsMEsGce45QHbpHhGESwBygLuj7gAPVMcomcIzgiZTY9UxyiSBjPcDlTHJGcszn7zAHqmPSM5XUyRTSM5JFTFwZGTGfY1dU1fTNFtJX+r39Czt4vDqVpqMc9Es+r9h+6kssSpVp0IOpVkoxXFt8El4s28mlq+t6ToFlLUdZ1CjZ28OTnVljLxnCXq3yfJczqLeHxEWtFVLLZdi688OP025i4wT7wp+r75lj5M6Y13cWt7mvZahrupVrus/RzfKK7RiuUV7JIoV9Qp0+FPi/kcd2p7Z9J0lSoaSvtFXv5U17+cv8PB/iR2zvb4hbitx2Gybd0YPk764gnN9+CD5L5yz8kdN3l5d6hc1Ly/uqtxcVXxTq1Zuc5Pu2+bKQYitXqV3mbPN+0W1mrbU1vTalVckuUVwjHyjy9/Fvq2AAQmuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZhOdOaqU5uMovKlF4afc7C2p44bw26o21/UWsWkUkoXMmqkUu1T1/3uI68BJTqzpPMHgyuka5qWg1vtGm1pU5eD4PzXJrwaaPUm2PGbZO5OGjO/wD7MunheTetQTf7M/sv8U/Y51lNZ5NPqjxCci234g7v2m4x0bWa0KKabt6n5yk/bhl6Z7rD9zI0tS6VV8Dt2z/bpWp4pa5Q3l+Onwfvi3h+5x8j15jsxz6rJ0vt34jbOrijunRJ0JPC8+yfFH74SeV9zZ2doO9Nq7nWNC121up44nSUuGol3cJYl17GQp1qVb2Gdq0TbTQdoklYXMXJ/dfqy/yyw37so+1y6DD6GfmjGF8h7gbRumPuBLn3MfcNcBu6YBnl7jC7jdwTdMAzhjDG7gm6YAHzQm4JugACejDdAAD0YboA+4C7gboBnmMMVQF3TAM49xyHbgu6YBn5Izz74HKAu6YwxhLqMLvkz8kOUB2DC9kMd2Z5jCHqAJDl0Qw2ZBIojsGMGTXvtQsNMtp3mpXtC1oQWZVK1RQivm3yOvtx+POy9G4qWlyravXSeFQXDTT6Jzl/GKY2pUp0Vmo0jDavtDpWgw9JqVxGn4N8X5R9p+5M7JPjbh3jtnalJVNe1ihaylHijTb4qk1+zBZk/wADz5uXxz3truaNhXp6RbtNcNr/AKySfeo+eV+zwnX1evXuasq9zWnVqTeZTnJylJ9236mOrapBcKSz4s43tB26WlDNLRKDqP8AHP1Y+6K9Z+9xO591fEXc1VO12hpaoxccK6u0nNPvGmnhfe38jqTWtf1ncV277W9Sr3lZ+kqssqK7RXpFeywjQBiq1zVrv12cL2g2w1raeWdSruUekVwgvKK4e95fiAAQGsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzGUoSU4ScZLmmnhowADkcw0Dxa37t6VONDXKt3Qp/7C8/PQa7Zf1kvlJHYeifEjQkvL3Jt2cWv9rZVFLP8AknjH+8dGAs07utS5S+puej9oO0mh4jbXUnFfdl668lvZwvLB6x0fxW8P9bUFb7kt6FSaX5u6zQkn2zPCb+TZyynUp1oKpRqxnF+jjLK/E8RG7peuazolbz9H1W7sqj5OVCtKGV2eHzXsy5DVH9+PwOm6X28XUMR1O0jLxhJx/wBMt7P+ZHtLmY5dUeX9I8cfELS2lW1OjqFNLHBd0IvH+aPDL8Wzl2l/EnXilDWtrwm+tS1uHH/sST/8Rahf0J83g6Bp3bLsve4Vac6L/fg384b308cHeWEOXRnW2l/EBsO+lwXv0/Tml9qvQ44t9l5bk/xSOR2Pid4f6hLht92afFr/AKap5P8A48FiNWjP2ZL4m5WW2Gz+oJO3vKbz034p/BtP5HJ+fRj63c17fUdOu0na39vXUlleXVjLP4M2MIk3EzYYThUW9B5XgOfcYfZDAwG4PwMPshz9hgYDcEwPrdxz6sYGBdwXBjl1YwjOALuBgxy7GeZkhUq06UeOrUjCK6yeELug+CyyXMY55PkX+8dp6Y3HUNy6ZQklngndQUsf4c5Zx2/8bPDmxpylHXZXM4rKp0LepJy9k2lH8WhkqlOHtSS95h7zaPR9Pz9ruqcMdHOKfwzk5zgydO3/AMSWh04v+zNt31eXT6RVhSX/AGeI4nqfxD7zu4zp6dZ6fYKWVGapupOPbnJ8Lfzj9xBK/t4dc+Rp1/2t7KWK9Wu6j7oRk/m0o/M9HHyNY3btnb8c6zrtlaSayoTqrjfyivrP7keVtW8Qd7a5CdLU9zX1SlUTU6canlwkn0cYYTX3HH23J5k22+rKs9VX/bj8TQdU7eoJOOmWbfc6ksf6Y5/3Ho7XPiE2fp8p0tHtLzVJxX1Zxj5NJvtmX1v+z+J15r/j9vXVU6Wlq20mllvNGHmVGuzlPK+9JM60BRqX9ep1x5HNNY7U9qNYzF3HoovpTW7/AKuM/wDUbep6xqutXDu9X1K5vKz/AE69Vza9ln0XsagBUbbeWc/q1alebqVZOUnzbeW/NgACEYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE2vR4PpWO59y6XTVHTdw6laU16QoXdSEfwTPmgVSceKZNRuK1tLfozcX3ptP5HJqXibv+ljh3bqTx+tWcv4m/T8Z/EukuGO55tL9a1oS/jA4UCRV6q5SfxZl6W1GuUP8A2r2rHyqTX5M7CoePHiLRilU1C1rvvUtIJv8A3UjYXxBb+Sw1pj+ds/8A+R1qB6uq6+8y/DbvaamsK/q++bf5s7L/APxB7+/U0v8A/bS//kVz8fvEGaxGrp8P8Nt/VnXAD7XX/Exz292nlwd9V/zM5zV8bvEupJuO4Y00/wBGNnQx++DZp3Hix4i3L4qm6rtP/q1Cn/4UjiQGu4rPnN/FlGrtZr9bhUvqz86k/wD/AEfer7+3xc/63d2r4fqo3lSK/BNI+LXubi6qyrXNxUq1JvMpzm5Sb92ysEcpyl7TyYq5v7u8/wDyKsp/xSb/ADYAA0qAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB//9k= in /www/wwwroot/temp.codingburgas.net/wp-content/themes/Divi/epanel/custom_functions.php on line 1519

Warning: file_exists(): open_basedir restriction in effect. File(/www/wwwroot/codingburgas.net/wp-content/uploads/et_temp/9k=-1080x675.) is not within the allowed path(s): (/www/wwwroot/temp.codingburgas.net/:/tmp/) in /www/wwwroot/temp.codingburgas.net/wp-content/themes/Divi/epanel/custom_functions.php on line 1540
Five elements to perfect your customer retention strategy

24option Рейтинг Форекс брокеров и бинарных опционов

платформа 24option

Заметил так же, что этого брокера активно пробивают в Яндексе. На самом деле про каждого из этих брокеров, можно найти как и кучу положительных, так и отрицательных отзывов – хотя, какие-то из них, точно являются лютой скаминой. На официальном портале БК отсутствует информация о действующих региональных ограничениях в отношении трейдеров. Отсутствуют данные и о завершенных «партнерках» 24Опцион. Обращения трейдеров рассматриваются максимально оперативно.

  1. Жаль, что не попала на этот сайт раньше и не видела отзывы.
  2. Почитал отзывы и все понял, мониторил после по отзывам других брокеров, пришел к выводу что все кидают.
  3. Поскольку эти провайдеры могут собирать личные данные, такие как ваш IP-адрес, мы разрешаем вам заблокировать их здесь.
  4. Общая поддержка доступна круглосуточно и без выходных по телефону, электронной почте или в чате.
  5. Услугами компании могут пользоваться жители других стран, за исключением Европейской экономической зоны, Британской Колумбии, Швейцарии, Канады и США.

Платформа для торговли у данного брокера функционирует с помощью обычного веб-браузера, поэтому скачивать какое-либо приложение вам не придётся. Жаль, что не попала на этот сайт раньше и не видела отзывы. В какой-то момент почувствовала неладное и не сделав никакой сделки – решила вывести деньги обратно. С этого момента их менеджер стала названивать с разных номеров телефонов всячески убеждая не выводить деньги. Когда я все-таки настояла на своем и подала заявку на вывод, эта компания – не предоставив мне никаких услуг – сняла с меня 6,500 рублей – обозвав это комиссией. Сторонитесь этих граждан, не попадайтесь на сладкие речи и обещанные золотые горы.

Мой счет

Бренд 24option был основан в 2010 году, и принадлежит компании Rodeler Limited. Главный офис компании располагается на Кипре, там же брокер регулируется финансовой комиссией и имеет лицензию CySec. Компания является западной, но сайт 24option доступен более чем на 15-ти языках, в число которых входит и русский. Основной задачей 24option является предоставление качественных услуг для трейдеров, а также личный подход к каждому клиенту. Крупный учебный центр, позволяет бесплатно ознакомиться с обучающими видео, различными статьями, полезной книгой о бинарных опционах и многими другими материалами. На русскоязычном рынке 24option только начинает набирать обороты, но доверие к компании проявленное от профессиональных трейдеров позволяет это делать ещё более стремительно.

Он активно занимается онлайн-торговлей и предлагает различные финансовые продукты в качестве брокера. Брокер специализируется на распределении CFD (контрактов на разницу цен), которыми можно торговать на акции, товары, валюту или криптовалюту. Несколько лет назад провайдер был номером 1 в торговле опционами.

Перевод средств на депозит осуществляется моментально, а вывод денег может длиться до трех рабочих дней. Создание депозита в личном кабинете возможно только в американских долларах. Максимальное кредитное плечо устанавливается для всех планов на уровне 1к400. Перед тем, как открыть счет в 24option, необходимо определить уровень плеча. Список рынков в AGlobalTrade охватывает широкий спектр финансовых инструментов из всех классов активов… Cauvo Capital предлагает высококачественные торговые условия, которые включают умеренное кредитное плечо и быстрое исполнение ордеров…

платформа 24option

Торговые инструменты 24option

На странице с обзором 24оптион вы можете ознакомиться как с положительными отзывами, так и с негативными, что поможет вам принять взвешенное решение при выборе брокера для инвестирования в бинарные опционы. Реальные отзывы трейдеров о брокерской компании 24 Опцион свидетельствуют, что не все так гладко, как пытается преподнести сама компания. Для работы с обычными CFD-контрактами трейдеры могут пользоваться универсальной торговой платформой Метатрейдер 4.

Минимальный депозит и доступные суммы сделок

Диаграммы могут отображаться в 6 различных вариантах. Кроме того, торговая платформа предлагает набор инструментов для технического анализа рынков. Например, доступно более 30 различных индикаторов, которые могут отображаться по желанию трейдера. Инструменты рисования для самоанализа также доступны через торговую платформу 24Option.

24Option предлагает более 250 различных значений, которыми можно торговать на торговой платформе. К ним относятся криптовалюты, форекс, акции, товары и индексы. платформа 24option Оферент удивляет своими разнообразными предложениями и вполне конкурентоспособен. Проверьте, как работает платформа, насколько она проста в использовании и не «лагает» ли в процессе торговли. Кроме того, многие трейдеры предпочитают торговать через мобильное приложение, поэтому проверьте его наличие и качество.

Тройное дно фигура разворота Берг

Тройное дно фигура разворота Берг

Уровень поддержки является значимым показателем, так как зачастую восходящее движение начинается именно от этого уровня. Чтобы определить, что тройное дно или тройная вершина сформировались, необходимо наблюдать за ценовым тройное дно трейдинг движением на графике. Для тройного дна можно сказать, что фигура сформировалась, когда цена достигла трех минимумов на одном уровне, а затем начала расти. Для тройной вершины можно сказать, что фигура сформировалась, когда цена достигла трех максимумов на одном уровне, а затем начала падать.

Ошибка № 2: бездумная торговля на максимумах и минимумах

тройное дно трейдинг

После формации «Тройного дна» и пробоя уровня поддержки тренд меняется на восходящий. Трейдер должен обратить внимание на подтверждение этой смены направления цены, чтобы избежать ложных сигналов. Подтверждение можно искать в виде закрытия цены выше шейки фигуры «Тройное дно».

Пример фигуры „Тройная вершина“ на крипто-рынке

Чтобы трейдер смог определить данную фигуру, необходимо пристально наблюдать за активностью валютной пары или акции. В техническом анализе существует графическая модель разворота нисходящего тренда, под названием Тройное дно (Triple Bottom). Вероятность того, что фигура полностью реализует сделку, едва превышает 60%. Фигура представляет собой 3 последовательных основания после нисходящего тренда, которые напоминают канал. Важно чтобы все три основания были примерно одинакового размера в пунктах.

Ошибка №1: торговля в середине паттерна (Избегайте середины!)

Они помогут вам подтвердить сигналы тройного дна и улучшить точность входа и выхода из сделки. В-третьих, начинающим трейдерам рекомендуется обращать внимание на формацию «Тройное дно» при анализе рынка. Ключевым моментом является пробитие ценой линии сопротивления, которая формируется на уровне максимумов между минимумами.

Топ-10 бычьих паттернов для успешной торговли на бинарных опционах

Среди них есть как редкие, так и популярные, которые можно встретить практически на каждом временном промежутке. Уровень сопротивления выдерживает многочисленные попытки прорваться, и быки не могут и дальше толкать цену вверх, а значит, не желательно вставать в длинную позицию по этому активу. Тройные вершины редки, но их присутствие на восходящем тренде — чёткий сигнал того, что покупатели теряют контроль над рынком. Фигуры „Тройная вершина“ и „Тройное дно“ встречаются редко даже на крипто-рынке, но дают трейдеру возможность очень высокой прибыли. Тройную вершину и Тройное дно можно чётко определить и зачастую — чётко увидеть; это важно для выявления значительных изменений тренда. Однако для того, чтобы подтвердить их формирование, необходимо убедиться, что актив действительно вышел из одного тренда и готов войти в другой, пройдя три вершины или дна.

  • Степень риска при таком виде трейдинга намного ниже, также он позволяет применять предельно близкие стопы.
  • Когда образуется первое дно, мы не можем судить об изменении тренда, это может быть просто коррекция.
  • Суть формации «Тройное дно» заключается в том, что она указывает на исчерпание медвежьего движения и возможное начало бычьего тренда.
  • А поскольку при бычьем тренде ценовые откаты назад к уровню происходят более часто, чем при медвежьем, то целесообразно сконцентрироваться на торговле откатов.
  • Если не хочется рисковать реальными деньгами в процессе изучения паттернов, можно воспользоваться демо счетом, Герчик и Ко, как брокер, прекрасно подойдет для этого.

тройное дно трейдинг

Суть формации «Тройное дно» заключается в том, что она указывает на исчерпание медвежьего движения и возможное начало бычьего тренда. Когда цена достигает третьего дна, индикаторы часто показывают сигналы перекупленности, а продавцы уже не так активны. При пробое уровня между вторым и третьим дном, формируется сигнал на покупку. Тройное дно — это одна из важных технических моделей, которая является своеобразным сигналом для трейдеров о возможном развороте тренда. Образуясь на графике, тройное дно представляет собой серию трех низких точек, между которыми имеется два промежуточных пика. Основная цель этой формации заключается в том, чтобы определить момент, когда тренд меняет направление с нисходящего на восходящий.

Это уровни, представляющие большой интерес для продавцов и покупателей соответственно, они образуются в областях прошлого разворота тренда. Когда образуется первое дно, мы не можем судить об изменении тренда, это может быть просто коррекция. Далее образуется второе, которое уже дает повод задуматься о силе покупателей. Ключевой момент – когда окончательно формируется тройное дно, что значит продавцам не преодолеть спрос покупателей и далее весьма вероятно движение вверх. Оптимальные точки входа и выхода можно легко определить с помощью данной модели.

Тройное дно представляет собой одну из важных фигур разворота на фондовом рынке. Умение распознать и правильно интерпретировать тройное дно может помочь трейдерам прогнозировать будущее движение цены и принимать обоснованные решения по своим инвестициям. При этом необходимо учитывать технические критерии и подтверждения тройного дна, такие как объемы торгов и пересечение уровней поддержки и сопротивления.

Операции с фондовыми активами, сделки на форекс и криповалютные операции, могут нести существенные риски. Пожалуйста, имейте это ввиду, при совершении любых финансовых операций. Во-вторых, для уверенного определения формации «Тройное дно» необходимо учитывать не только внешний вид графика, но и дополнительные сигналы, такие как объем торговли и индикаторы.

Это позволит вам сохранить капитал и избежать крупных потерь в случае неблагоприятного движения цены. И, наконец, важным сигналом является подтверждение формации «Тройное дно» другими индикаторами и техническими средствами анализа. Например, сходящиеся индикаторы дивергенции на осцилляторах или пересечение скользящих средних могут служить дополнительным подтверждением сигнала формации. По сути оба паттерна абсолютно одинаковы, и разница заключается лишь в том, где они появились.

Первое дно формируется после снижения цены и является сигналом об окончании текущего нисходящего тренда. После этого происходит небольшое восстановление, но цена снова снижается и формируется второе дно. Затем происходит еще одно восстановление и цена опускается в третий раз, формируя третье дно. «Тройное дно» имеет три локальных минимума, которые образуют уровень поддержки. Когда цена достигает этого уровня и отскакивает от него, это может быть сигналом для трейдера о возможности входа в рынок с долгой позицией.

Чтобы правильно определить паттерн «‎тройное дно‎», нужно дождаться полного формирования трех последовательных минимумов цены, которые должны располагаться на одном уровне. И после того, как рост цены преодолеет последний максимум цены, паттерн может быть реализован. Чтобы правильно использовать паттерн «‎тройное дно» в трейдинге, нужно соблюдать ряд простых правил, которые также помогут автоматизировать работу по фигуре. Паттерн тройное дно — это фигура графического анализа, которая появляется на графике цены после длительного нисходящего тренда. Рекомендуется начинающим трейдерам уделить внимание изучению данной формации и ее основным характеристикам.

Можно с уверенностью сказать, что «Тройное дно» — это поистине уникальная формация, которая способна предупредить трейдера о предстоящем изменении цены. Благодаря своей нетривиальной структуре и понятным принципам, эта фигура может стать незаметным спутником успеха в трейдинге. Важно отметить, что формация «Тройное дно» не является гарантией успешных сделок и требует аккуратного анализа и проверки других данных. Однако, она может стать полезным инструментом для начинающих трейдеров, позволяющим обнаруживать потенциальные точки входа или выхода.

Она может представлять собой потенциальный выход из долгосрочного падающего тренда, что открывает возможности для прибыльных сделок на рынке. При образовании формации «Тройное дно» можно наблюдать увеличение торгового объема, что говорит о заинтересованности рынка и активных движениях покупателей. Для определения целевой цены тройного дна можно прибавить разницу между сопротивлением и уровнем поддержки к цене, на которой произошло пробитие сопротивления. Это помогает трейдерам определить потенциальную прибыль и принять соответствующие решения. Тройное дно – это простая графическая формация, которая образуется после нисходящего тренда и предвещает восходящую тенденцию цены. Она состоит из трех равных минимумов, которые образуют уровни поддержки.

Все попытки снова пробиться через область USD в следующие дни также потерпели неудачу, закрепив её как уровень сопротивления. Тройная вершина может появиться на любом временном интервале, так что даже краткосрочная торговля на таймфреймах 5m или 1h может быть прибыльной, если трейдер замечает такую фигуру. Это один из наиболее редких графических паттернов, но это важный инструмент, который следует держать в своем торговом арсенале на случаи, когда рынки трудно предсказуемы. Отметим, что все три максимума данной модели должны быть примерно равны между собой.

Эта модель представляет собой тройственное движение цены на графике, образующее область поддержки. Кажется, что цена достигла нижней границы и будет идти вниз, однако она совершает разворот вспять, образуя первое дно. Затем происходит отскок и новая попытка пройти нижний уровень, но цена вновь разворачивается и формирует второе дно. Наконец, после третьего тестирования нижней границы, цена растет и тренд меняет свое направление.

Не менее важным элементом успешной торговли является умение правильно управлять своим капиталом. Разделите свой капитал на несколько частей и не рискуйте больше 2-3% от общей суммы в одной сделке. Это позволит вам избежать больших потерь и сохранить стабильность в трейдинге. Одним из важных аспектов успешного трейдинга является наличие четкой и проработанной торговой стратегии.

Форекс обучение в школе Бориса Купера, переходите по ссылке и узнаете больше — https://boriscooper.org/.

10 Knowledge Analytics Tools For Everybody Newbie To Advanced Degree

10 Knowledge Analytics Tools For Everybody Newbie To Advanced Degree

They can even inform us, for instance, whether wage rises have a minimal impact on some populations (which can save the group lots of money). In addition, Power BI can be integrated with other Microsoft merchandise, similar to Excel and SharePoint, and different tools like R and Python. Power BI additionally allows sharing the dashboards and reviews with others, both by sharing the link or embedding the report to a website or software. It is a potent mathematical optimization programme made to assist companies in making better selections by locating the simplest https://www.xcritical.in/ answers to challenging issues.

High 5 Open Supply Big Knowledge Analytics Tools

They will help you boost business analytics instrument sales, optimise operations and make smarter choices. VLink is a dependable IT service supplier that gives dedicated knowledge analytics options. Our consultants mix modular and scalable solutions along with your current information architecture to get your knowledge modernization journey.

What Are The Constraints Of Utilizing Ai Tools For Data Analysis?

If you want to increase any Salesforce Cloud with native, actionable insights in your CRM workflow, strive CRM Analytics. Check out our HR analytics certification to learn extra about utilizing Excel and Tableau to analyze knowledge and create HR dashboards. R offers a extensive variety of built-in statistical and graphical features for information exploration, visualisation, and modelling. Additionally, numerous packages, including these for machine learning, pure language processing, and geographical analysis, may be utilized for numerous specialized functions. In short, information analytics is the method of analyzing and reworking Proof of space uncooked knowledge into actionable data. Not solely established organizations but small enterprise homeowners can use analytics software program to make knowledgeable choices.

How To Determine On One Of The Best Information Analytics Software?

Make your selection wisely and embark in your journey towards data-driven success.With these tools by your facet, the probabilities are limitless, and the insights are boundless. It’s time to unveil the power of instruments for data analysis and make data-driven selections that drive success. Tableau is an information visualization and enterprise intelligence software that allows users to create interactive and visually appealing dashboards and stories. Organizations might use it to raised perceive their data, analyze it, and share insights with others. Tableau is renowned for its user-friendliness, clear drag-and-drop interface, and flexibility when it comes to connecting to various varieties of knowledge sources. Due to the heavy reliance on knowledge, business analytics instruments have become indispensable for businesses right now.

  • This weblog post will focus on the top 10 business analytics instruments that every business analyst should study while pursuing a business analyst course.
  • We have listed the highest 5 classes among data analytics software instruments based on their reputation and utilization by consumers out there.
  • Data scientists are on the forefront of data-driven decision-making, utilizing superior analytics, statistical modeling, and machine studying to solve complex issues.
  • Tableau is a data visualization and business intelligence software that permits users to create interactive and visually interesting dashboards and reports.
  • Power BI additionally permits sharing the dashboards and reports with others, both by sharing the link or embedding the report to a web site or utility.

Enterprise Analytics: Data-driven Choice Making

It is an enterprise-ready data science platform that infuses information engineering focusing to accelerate the velocity of your small business transformation. RapidMiner incorporates AI innovation throughout the information science lifecycle to speed up business analytics. Qlik is a enterprise intelligence and knowledge visualization software that enables users to create interactive visualizations and reports. Make sure you choose instruments for data analytics that must not solely handle today’s knowledge volumes and complexity but in addition adapt to future demands.

Techniques similar to drill down, data discovery, knowledge mining, and correlations are often employed. Prescriptive analytics is the place artificial intelligence and massive data mix to assist predict outcomes and establish what actions to take. This class of analytics can be further broken down into optimization and random testing. Using advancements in machine studying (ML), prescriptive analytics can help answer questions such as “What if we do this slogan? ” You can test variables and even recommend new choices that supply a higher probability of producing a optimistic consequence. Python is broadly thought of the best device for knowledge science as a outcome of its wealthy libraries like Pandas, NumPy, and scikit-learn, along with strong neighborhood help.

This function is invaluable in eventualities the place speed and interactive evaluation are imperative. Redash is a light-weight, cost-effective tool for querying information sources and building visualizations. It’s an open-source answer, and organizations looking for a fast begin can go for an affordable hosted model. Redash’s question editor supplies a user-friendly interface for writing queries, exploring schemas, and managing integrations.

Data Analytics Tools

It lets you work on methods similar to regression, classification, time series, forecasting, and so on. KNIME (Konstanz Information Miner) is a strong open-source platform for data analytics. With KNIME, you’ll be able to visually design information workflows, processing and analyzing data without needing to write down code. Moreover, it’s user-friendly, making it a fantastic tool for beginners and experts. KNIME helps a variety of data varieties and sources, making it versatile for varied data-related tasks.

Python is the most sought-after programming language within the field of enterprise analytics and has gained more reputation with the rising significance of Big Data. It has become much more necessary with the event of analytical and statistical libraries corresponding to SciPy and NumPy. It is simple to learn and easy to make use of, which makes it the favourite language for programmers. Launched by a company called Splunk Technology, Splunk is one other well-liked business analytics tool. Many companies use it to seize, index & find correlations between real-time information, and to process machine log files data. This information is captured from a searchable repository and can be used within the era of reports, graphs, and dashboards.

Co-Pilot leverages AI and machine learning to recommend the most effective ways to visualise knowledge, automate routine duties, and supply insights. In PowerBI, Co-Pilot helps customers generate stories and dashboards with minimal manual intervention. In Tableau, it enhances data exploration and visualization capabilities, enabling users to derive insights extra efficiently.

Data Analytics Tools

It includes scalability in managing rising knowledge as properly as integrating the latest technologies like machine learning and AI for predictive analytics and automated insights. One of the most important elements you have to contemplate when selecting the best data analytics software program is data integration and accessibility. The finest tools come with the ability to combine with numerous information sources and codecs seamlessly. In addition, they want to present easy access to data, irrespective of the place it’s stored and the way it’s structured. Tableau is an information analytics software used for enterprise intelligence resolution benefits. It will allow you to to see and perceive information with its built-in visual data practices.

Various libraries in Python are additionally useful in cleansing and manipulating large amounts of data, such as pandas, which makes it simple to do so. Additionally, several instruments for data visualization, corresponding to Matplotlib and Seaborn, are available, enabling users to provide high-quality data visualizations. Python is a high-level, all-purpose programming language for synthetic intelligence, machine studying, and information analysis. Python is a popular language for builders of all talent ranges because of its simplicity, readability, and flexibility.

The terms are often interchangeable, but the analysis is simply one step in the whole analytics process. This well-known software platform provides quite lots of advertising, gross sales, and customer service options to companies of all kinds. Furthermore, its cloud-based software is intended to help organizations in attracting and engaging shoppers via inbound advertising and gross sales methods. Big data refers back to the generation, collection, and processing of heavy volumes of data from a broad range of sources. While analytics can be carried out on a single, contained dataset, it works finest with heavy volumes of data—in truth, the more information, the higher.

It offers easy and environment friendly tools for data mining and knowledge evaluation, making it one of the most in style libraries for newbie and advanced data scientists alike. R is an open-source programming language for graphics and statistical computing that’s broadly utilized by business analytics. Business analytics typically use R programming to construct practical models and establish patterns in data. Knowledge of R programming is a must if you want to make a career in the enterprise analytics area. Board is another top-rated enterprise analytical tool that’s best identified for its capacity to create custom reviews and dashboards as per business requirements.